Displaying all 12 publications

Abstract:
Sort:
  1. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R
    Nanoscale Adv, 2019 Oct 09;1(10):3807-3835.
    PMID: 36132093 DOI: 10.1039/c9na00374f
    Electrolytes are one of the vital constituents of electrochemical energy storage devices and their physical and chemical properties play an important role in these devices' performance, including capacity, power density, rate performance, cyclability and safety. This article reviews the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices. The article discusses factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction. The requirements needed to design better electrolytes and the challenges that still need to be addressed for building better supercapacitive devices for the competitive energy storage market have also been highlighted.
  2. Harilal M, G Krishnan S, Pal B, Reddy MV, Ab Rahim MH, Yusoff MM, et al.
    Langmuir, 2018 02 06;34(5):1873-1882.
    PMID: 29345940 DOI: 10.1021/acs.langmuir.7b03576
    This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.
  3. Pal B, Sarkar KJ, Wu B, Děkanovský L, Mazánek V, Jose R, et al.
    ACS Omega, 2023 Jan 17;8(2):2629-2638.
    PMID: 36687114 DOI: 10.1021/acsomega.2c07143
    Charge storage in electrochemical double-layer capacitors (EDLCs) is via the adsorption of electrolyte counterions in their positive and negative electrodes under an applied potential. This study investigates the EDLC-type charge storage in carbon nanotubes (CNT) electrodes in aqueous acidic (NaHSO4), basic (NaOH), and neutral (Na2SO4) electrolytes of similar cations but different anions as well as similar anions but different cations (Na2SO4 and Li2SO4) in a two-electrode Swagelok-type cell configuration. The physicochemical properties of ions, such as mobility/diffusion and solvation, are correlated with the charge storage parameters. The neutral electrolytes offer superior charge storage over the acidic and basic counterparts. Among the studied ions, SO4 2- and Li+ showed the most significant capacitance owing to their larger solvated ion size. The charge stored by the anions and cations follows the order SO4 2- > HSO4 - > OH- and Li+ > Na+, respectively. Consequently, the CNT//Li2SO4//CNT cell displayed outstanding charge storage indicators (operating voltage ∼0-2 V, specific capacitance ∼122 F·g-1, specific energy ∼67 W h·kg-1, and specific power ∼541 W·kg-1 at 0.5 A·g-1) than the other cells, which could light a red light-emitting diode (2.1 V) for several minutes. Besides, the CNT//Li2SO4//CNT device showed exceptional rate performance with a capacitance retention of ∼95% at various current densities (0.5-2.5 A·g-1) after 6500 cycles. The insights from this work could be used to design safer electrochemical capacitors of high energy density and power density.
  4. Ridzwan MIZ, Sukjamsri C, Pal B, van Arkel RJ, Bell A, Khanna M, et al.
    J Orthop Res, 2018 03;36(3):993-1001.
    PMID: 28762563 DOI: 10.1002/jor.23669
    Proximal femoral fractures can be categorized into two main types: Neck and intertrochanteric fractures accounting for 53% and 43% of all proximal femoral fractures, respectively. The possibility to predict the type of fracture a specific patient is predisposed to would allow drug and exercise therapies, hip protector design, and prophylactic surgery to be better targeted for this patient rendering fracture preventing strategies more effective. This study hypothesized that the type of fracture is closely related to the patient-specific femoral structure and predictable by finite element (FE) methods. Fourteen femora were DXA scanned, CT scanned, and mechanically tested to fracture. FE-predicted fracture patterns were compared to experimentally observed fracture patterns. Measurements of strain patterns to explain neck and intertrochanteric fracture patterns were performed using a digital volume correlation (DVC) technique and compared to FE-predicted strains and experimentally observed fracture patterns. Although loaded identically, the femora exhibited different fracture types (six neck and eight intertrochanteric fractures). CT-based FE models matched the experimental observations well (86%) demonstrating that the fracture type can be predicted. DVC-measured and FE-predicted strains showed obvious consistency. Neither DXA-based BMD nor any morphologic characteristics such as neck diameter, femoral neck length, or neck shaft angle were associated with fracture type. In conclusion, patient-specific femoral structure correlates with fracture type and FE analyses were able to predict these fracture types. Also, the demonstration of FE and DVC as metrics of the strains in bones may be of substantial clinical value, informing treatment strategies and device selection and design. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:993-1001, 2018.
  5. Yen CF, Hamdan M, Hengrasmee P, Huang Z, Jeong K, Dao LA, et al.
    Int J Gynaecol Obstet, 2023 Dec;163(3):720-732.
    PMID: 37837343 DOI: 10.1002/ijgo.15142
    Endometriosis should be diagnosed as early as possible in the continuum of care; but substantial delays of approximately 6-8 years between symptom onset and endometriosis diagnosis have been widely reported. With the purpose of improving the prompt diagnosis of endometriosis, the Asia-Pacific Endometriosis Expert Panel (APEX) sought to address the reasons for diagnostic delays across the region, and formulate a multi-pronged approach to overcoming these challenges. In the first instance, clinical diagnosis is preferable to surgical diagnosis, in order to facilitate earlier empirical treatment and minimize the negative sequelae of undiagnosed/untreated disease. There should be a high clinical index of suspicion in women presenting with cyclical symptoms, including those involving extrapelvic organs. Diagnostic delays in Asia-Pacific countries are attributable to a variety of patient, physician, and healthcare factors, including poor awareness, normalization/trivialization of pain, individual/cultural attitudes toward menstruation, default use of symptom-suppressing treatments, misdiagnosis, and a lack of diagnostic resourcing or adequate referral pathways in some areas. Suggested initiatives to reduce diagnostic delays are geared toward improving public awareness, improving clinical diagnostic skills, streamlining multidisciplinary care pathways for timely referral, updating and implementing diagnostic guidelines, lobbying policymakers and insurance companies for endometriosis support, and increasing efforts to bridge data gaps and perform further research in this field. Formulating specific action plans and gathering traction are the responsibility of individual countries within local parameters. The APEX group advocates for any initiatives and policies that support the unmet needs of women with endometriosis, to improve patient experience and outcomes.
  6. Fulsom BG, Pedlar TK, Adachi I, Aihara H, Al Said S, Asner DM, et al.
    Phys Rev Lett, 2018 Dec 07;121(23):232001.
    PMID: 30576207 DOI: 10.1103/PhysRevLett.121.232001
    We report the observation of ϒ(2S)→γη_{b}(1S) decay based on an analysis of the inclusive photon spectrum of 24.7  fb^{-1} of e^{+}e^{-} collisions at the ϒ(2S) center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We measure a branching fraction of B[ϒ(2S)→γη_{b}(1S)]=(6.1_{-0.7-0.6}^{+0.6+0.9})×10^{-4} and derive an η_{b}(1S) mass of 9394.8_{-3.1-2.7}^{+2.7+4.5}  MeV/c^{2}, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.
  7. Li YB, Shen CP, Yuan CZ, Adachi I, Aihara H, Al Said S, et al.
    Phys Rev Lett, 2019 Mar 01;122(8):082001.
    PMID: 30932568 DOI: 10.1103/PhysRevLett.122.082001
    We present the first measurements of absolute branching fractions of Ξ_{c}^{0} decays into Ξ^{-}π^{+}, ΛK^{-}π^{+}, and pK^{-}K^{-}π^{+} final states. The measurements are made using a dataset comprising (772±11)×10^{6} BB[over ¯] pairs collected at the ϒ(4S) resonance with the Belle detector at the KEKB e^{+}e^{-} collider. We first measure the absolute branching fraction for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} using a missing-mass technique; the result is B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})=(9.51±2.10±0.88)×10^{-4}. We subsequently measure the product branching fractions B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→Ξ^{-}π^{+}), B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→ΛK^{-}π^{+}), and B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+}) with improved precision. Dividing these product branching fractions by the result for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} yields the following branching fractions: B(Ξ_{c}^{0}→Ξ^{-}π^{+})=(1.80±0.50±0.14)%, B(Ξ_{c}^{0}→ΛK^{-}π^{+})=(1.17±0.37±0.09)%, and B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+})=(0.58±0.23±0.05)%. For the above branching fractions, the first uncertainties are statistical and the second are systematic. Our result for B(Ξ_{c}^{0}→Ξ^{-}π^{+}) can be combined with Ξ_{c}^{0} branching fractions measured relative to Ξ_{c}^{0}→Ξ^{-}π^{+} to yield other absolute Ξ_{c}^{0} branching fractions.
  8. Seong IS, Vahsen SE, Adachi I, Aihara H, Al Said S, Asner DM, et al.
    Phys Rev Lett, 2019 Jan 11;122(1):011801.
    PMID: 31012694 DOI: 10.1103/PhysRevLett.122.011801
    We report on the first Belle search for a light CP-odd Higgs boson, A^{0}, that decays into low mass dark matter, χ, in final states with a single photon and missing energy. We search for events produced via the dipion transition ϒ(2S)→ϒ(1S)π^{+}π^{-}, followed by the on-shell process ϒ(1S)→γA^{0} with A^{0}→χχ, or by the off-shell process ϒ(1S)→γχχ. Utilizing a data sample of 157.3×10^{6} ϒ(2S) decays, we find no evidence for a signal. We set limits on the branching fractions of such processes in the mass ranges M_{A^{0}}<8.97  GeV/c^{2} and M_{χ}<4.44  GeV/c^{2}. We then use the limits on the off-shell process to set competitive limits on WIMP-nucleon scattering in the WIMP mass range below 5  GeV/c^{2}.
  9. Sibidanov A, Varvell KE, Adachi I, Aihara H, Al Said S, Asner DM, et al.
    Phys Rev Lett, 2018 Jul 20;121(3):031801.
    PMID: 30085771 DOI: 10.1103/PhysRevLett.121.031801
    We report the results of a search for the rare, purely leptonic decay B^{-}→μ^{-}ν[over ¯]_{μ} performed with a 711  fb^{-1} data sample that contains 772×10^{6}  BB[over ¯] pairs, collected near the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The signal events are selected based on the presence of a high momentum muon and the topology of the rest of the event showing properties of a generic B-meson decay, as well as the missing energy and momentum being consistent with the hypothesis of a neutrino from the signal decay. We find a 2.4 standard deviation excess above background including systematic uncertainties, which corresponds to a branching fraction of B(B^{-}→μ^{-}ν[over ¯]_{μ})=(6.46±2.22±1.60)×10^{-7} or a frequentist 90% confidence level interval on the B^{-}→μ^{-}ν[over ¯]_{μ} branching fraction of [2.9,10.7]×10^{-7}.
  10. Guido E, Mussa R, Tamponi U, Aihara H, Al Said S, Asner DM, et al.
    Phys Rev Lett, 2018 Aug 10;121(6):062001.
    PMID: 30141661 DOI: 10.1103/PhysRevLett.121.062001
    We report the first observation of the hadronic transition ϒ(4S)→η^{'}ϒ(1S), using 496  fb^{-1} data collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We reconstruct the η^{'} meson through its decays to ρ^{0}γ and to π^{+}π^{-}η, with η→γγ. We measure B(ϒ(4S)→η^{'}ϒ(1S))=[3.43±0.88(stat)±0.21(syst)]×10^{-5}, with a significance of 5.7σ.
  11. Guan Y, Vossen A, Adachi I, Adamczyk K, Ahn JK, Aihara H, et al.
    Phys Rev Lett, 2019 Feb 01;122(4):042001.
    PMID: 30768311 DOI: 10.1103/PhysRevLett.122.042001
    We report the first observation of the spontaneous polarization of Λ and Λ[over ¯] hyperons transverse to the production plane in e^{+}e^{-} annihilation, which is attributed to the effect arising from a polarizing fragmentation function. For inclusive Λ/Λ[over ¯] production, we also report results with subtracted feed-down contributions from Σ^{0} and charm. This measurement uses a dataset of 800.4  fb^{-1} collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV. We observe a significant polarization that rises with the fractional energy carried by the Λ/Λ[over ¯] hyperon.
  12. Adachi I, Adye T, Ahmed H, Ahn JK, Aihara H, Akar S, et al.
    Phys Rev Lett, 2018 Dec 28;121(26):261801.
    PMID: 30636113 DOI: 10.1103/PhysRevLett.121.261801
    We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6}BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6}BB[over ¯] pairs recorded by the Belle detector. The results of the measurement are sin2β=0.80±0.14(stat)±0.06(syst)±0.03(model) and cos2β=0.91±0.22(stat)±0.09(syst)±0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is β=[22.5±4.4(stat)±1.2(syst)±0.6(model)]°. The measurement assumes no direct CP violation in B^{0}→D^{(*)}h^{0} decays. The quoted model uncertainties are due to the composition of the D^{0}→K_{S}^{0}π^{+}π^{-} decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e^{+}e^{-}→cc[over ¯] data sample. CP violation is observed in B^{0}→D^{(*)}h^{0} decays at the level of 5.1 standard deviations. The significance for cos2β>0 is 3.7 standard deviations. The trigonometric multifold solution π/2-β=(68.1±0.7)° is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links