Displaying all 2 publications

Abstract:
Sort:
  1. Septama AW, Jantan I, Panichayupakaranant P
    J Pharm Pharmacol, 2018 Sep;70(9):1242-1252.
    PMID: 29943393 DOI: 10.1111/jphp.12952
    OBJECTIVES: To investigate the effects of flavonoids isolated from Artocarpus heterophyllus. heartwood on chemotaxis, phagocytosis, reactive oxygen species (ROS) production and myeloperoxidase (MPO) activity of human phagocytes.

    METHODS: Chemotaxis was evaluated using a modified Boyden chamber and phagocytosis was determined by flowcytometer. Respiratory burst was investigated by luminol-based chemiluminescence assay while MPO activity was determined by colorimetric assay.

    KEY FINDINGS: Artocarpanone and artocarpin strongly inhibited all steps of phagocytosis. Artocarpanone and artocarpin showed strong chemotactic activity with IC50 values of 6.96 and 6.10 μm, respectively, which were lower than that of ibuprofen (7.37 μm). Artocarpanone was the most potent compound in inhibiting ROS production of polymorphonuclear leucocytes and monocytes with IC50 values comparable to those of aspirin. Artocarpin at 100 μg/ml inhibited phagocytosis of opsonized bacteria (28.3%). It also strongly inhibited MPO release with an IC50 value (23.3 μm) lower than that of indomethacin (69 μm). Structure-activity analysis indicated that the number of hydroxyl group, the presence of prenyl group and variation of C-2 and C-3 bonds might contribute towards their phagocytosis.

    CONCLUSIONS: Artocarpanone and artocarpin were able to suppress strongly the phagocytosis of human phagocytes at different steps and have potential to be developed into potent anti-inflammatory agents.

  2. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links