Displaying all 3 publications

Abstract:
Sort:
  1. Rosilah Ab Aziz, Kodi Isparan Kandasamy, Faridah Qamaruz Zaman, Parameswari Namasivayam
    MyJurnal
    The in vitro shoot proliferation of endemic Begonia pavonina in three culture conditions i.e semisolid medium (SM), liquid culture medium (LM) and in temporary immersion bioreactor system (RITA®) was analyzed in this study. To minimize contamination rates, seeds were surface sterilized and cultured on MS basal media. The clean raised shoots were then used as explants for inoculation onto the tested culture conditions. In this experiment, the explants were maintained in MS medium supplemented with 0.1mgL-1 BAP for shoot multiplication. After 4 weeks of incubation, higher regeneration rates were observed in TIM as compared to other medium conditions. The maximum shoot number was obtained from TIM system with a mean of 5.30 shoots per explant, followed by LM (2.47 shoots per explant) and SM (1.2 shoots per explant). Shoot hyperhydration was also lowest in a TIM system. Overall, TIM was shown to produce higher shoot multiplications combined with healthy morphological characteristics of plantlets. Shoot cultures from the all cultures were successfully rooted in vitro and acclimatized well in the greenhouse.
  2. Durgadevi Mohan, Ho, Pei Yin, Ho, Chai Ling, Parameswari Namasivayam, Noor Baity Saidi
    MyJurnal
    Herbicides are inevitable inputs to control excessive weed in crop land, particularly where modern agricultural practices such as conservation tillage, are opted. Intensive farming has increased the market value of herbicides among the other pesticides. Although herbicides are effective in controlling weed population, administration of this synthetic chemicals may alter the soil microbial community causing potential increase of plant pathogens. Moreover, herbicides may also have nontarget effects on the cultivated crops making them more susceptible to diseases. Actions of herbicides in soil that either stimulate microbial growth or wipe out some microbial population may create space for the thrivial of opportunistic fungi. Previous studies showed that white rot fungi are more tolerant to herbicides as they produce lignin degrading enzymes that are highly oxidative, non-specific and are able to transform a wide range of herbicides. Besides that, this group of fungi can grow on agricultural waste substrates. Influence of these herbicides on soil microbial ecosystem and interactions of plants and pathogenic white rot fungi modulate disease development in plant hosts.
  3. Lim, Yi-Yi, Lee, Wei-Kang, Leow, Adam Thean-Chor, Parameswari Namasivayam, Janna-Ong Abdullah, Ho, Chai-Ling
    MyJurnal
    Red seaweeds (Rhodophyta) produce a variety of sulfated galactans in their cell wall matrix and intercellular space, contributing up to 50-60 % of their total dry weight. These sulfated polysaccharides are made up of galactose disaccharides substituted with sulfate, methoxyl, pyruvic acid, or non-galactose monosaccharides (e.g. xylose, glucose and mannose). They are required by the Rhodophytes for protection against pathogen, desiccation, tidal waves and extreme changes in pH, temperature and salinity. Since ancient times, sulfated galactans from red seaweeds, such as agar and carrageenan, have been consumed as human foods and later being used in traditional medicine. Nowadays, some red seaweeds are cultivated and exploited for commercial uses in various fields. In this review, different types of sulfated galactans found in red seaweeds and their current and potential uses in food, biotechnology, medical and pharmaceutical industries are discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links