Displaying all 3 publications

Abstract:
Sort:
  1. Mahmood W, Ahmad I, Khan MA, Ali Shah SA, Ashraf M, Shahzad MI, et al.
    Heliyon, 2022 Nov;8(11):e11332.
    PMID: 36387450 DOI: 10.1016/j.heliyon.2022.e11332
    Synthesis of new Cefpodoxime derivatives via Schiff Bases mechanism and the efficiency of their antimicrobial and antiviral activities were addressed. They were analyzed for structural validation by using spectroscopic techniques using FTIR, 1HNMR, and 13CNMR. Molecular docking against IBV Virus papain-like protease (PLPro) was done with Auto dock tools against compounds having excellent IC50 values against IBV (Corona Class) virus. All derivatives showed strong zone of inhibition ranges from (55 ± 2.0 to 70 ± 0.8 mm) against E. coli. Compounds 1,2,4 and 6 derivatives showed remarkable activity against Stenotrophomonas maltophilia and Serratia marcescens. But For most the newly synthesized derivatives C 1 (64 ± 1.60), C 3 (32 ± 0.80), and C 8 (64 ± 1.60) showed potential IC50 values against two variants of Corona class viruses i.e. Avian Influenza (H9) and Avian corona (IBV) viruses. The current study revealed that newly synthesized Schiff Bases possessed strong anti-viral potential. Further studies may make a breakthrough in medical sciences to tackle latest challenges such as Corona Virus Diseases.
  2. Pervaiz I, Saleem H, Sarfraz M, Imran Tousif M, Khurshid U, Ahmad S, et al.
    Food Res Int, 2020 11;137:109606.
    PMID: 33233202 DOI: 10.1016/j.foodres.2020.109606
    Calligonum polygonoides L. also known as famine food plant, is normally consumed in times of food scarcity in India and Pakistan and also used traditionally in the management of common diseases. The present design aims to provide an insight into the medicinal potential of four solvent extracts of C. polygonoides via an assessment of its phytochemical profile, antioxidant and enzyme inhibitory potential. Phytochemical composition was estimated by deducing total bioactive constituents, UHPLC-MS secondary metabolites profile, and HPLC phenolic quantification. Antioxidant potential was determined via six methods (radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum total antioxidant capacity and metal chelation activity). Enzyme inhibitory potential was assessed against clinical enzymes (acetylcholinesterase -AChE, butyrylcholinesterase -BChE, tyrosinase, and α-amylase). The highest amounts of phenolic contents were found in chloroform extract (76.59 mg GAE/g extract) which may be attributed to its higher radical scavenging, reducing power and tyrosinase inhibition potential. The n-butanol extract containing the maximum amount of flavonoids (55.84 mg RE/g extract) exhibited highest metal chelating capacity. Similarly, the n-hexane extract was found to be most active against AChE (4.65 mg GALAE/g extract), BChE (6.59 mg GALAE/g extract), and α-amylase (0.70 mmol ACAE/g extract) enzymes. Secondary metabolite assessment of the crude methanol extract as determined by UHPLC-MS analysis revealed the presence of 24 (negative ionization mode) and 15 (positive ionization mode) secondary metabolites, with most of them belonging to phenolic, flavonoids, terpene, and alkaloid groups. Moreover, gallic acid and naringenin were the main phenolics quantified by HPLC-PDA analysis in all the tested extracts (except n-butanol extract). PCA statistical analysis was also conducted to establish any possible relationship amongst bioactive contents and biological activities. Overall, the C. polygonoides extracts could be further considered to isolate bioactive enzyme inhibitory and antioxidant natural phytocompounds.
  3. Anwar S, Faisal Nadeem M, Pervaiz I, Khurshid U, Akmal N, Aamir K, et al.
    Front Plant Sci, 2022;13:988352.
    PMID: 36212347 DOI: 10.3389/fpls.2022.988352
    This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links