Displaying all 13 publications

Abstract:
Sort:
  1. Pan F, Li Z, Gong H, Petkov JT, Lu JR
    J Colloid Interface Sci, 2018 Dec 01;531:18-27.
    PMID: 30015167 DOI: 10.1016/j.jcis.2018.07.031
    Surfactants are multifunctional molecules widely used in personal care and healthcare formulations to cleanse, help disperse active ingredients (e.g., forming emulsions) and stabilise products. With increasing demands on improving biosafety, there is now mounting pressure to understand how different surfactants elicit toxicities at molecular and cellular levels. This work reports the membrane-lytic behaviour of a group of sulphonated methyl ester (SME) surfactants together with representative conventional surfactants. All surfactants displayed the clear rise of lysis of the model lipid bilayer membranes around their CMCs, but the two ionic surfactants SDS and C12TAB even caused measurable lysis below their CMCs, with membrane-lytic actions increasing with monomer concentration. Furthermore, whilst ionic and nonionic surfactants could achieve full membrane lysis once above their CMCs, this ability was weak from the SME surfactants and decreased with increasing the acyl chain length. In contrast to the conventional anionic surfactants such as SDS and SLES, the protein solubilizing capability of the SME surfactants was also low. On the other hand, MTT assays against 3T3 fibroblast cells and human chondrocyte cells revealed high toxicity from SDS and C12TAB against the other surfactants studied, but the difference between SME and the rest of conventional surfactants was small. Similar behaviour was also observed in their bactericidal effect against E. coli and S. aureus. The trend is broadly consistent with their membrane-lytic behaviour, indicating little selectivity in their cytotoxicity and bactericidal action. These results thus reveal different toxicities implicated from different surfactant head groups. Increase in acyl chain length as observed from SME surfactants could help improve surfactant biocompatibility.
  2. Danov KD, Stanimirova RD, Kralchevsky PA, Basheva ES, Ivanova VI, Petkov JT
    J Colloid Interface Sci, 2015 Nov 1;457:307-18.
    PMID: 26196714 DOI: 10.1016/j.jcis.2015.07.020
    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.
  3. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
  4. Basheva ES, Danov KD, Radulova GM, Kralchevsky PA, Xu H, Ung YW, et al.
    J Colloid Interface Sci, 2019 Mar 07;538:660-670.
    PMID: 30572230 DOI: 10.1016/j.jcis.2018.12.034
    HYPOTHESES: The micellar solutions of sulfonated methyl esters (SME) are expected to form stratifying foam films that exhibit stepwise thinning. From the height of the steps, which are engendered by micellar layers confined in the films, we could determine the micelle aggregation number, surface electric potential, and ionization degree. Moreover, addition of the zwitterionic surfactant cocamidopropyl betaine (CAPB) is expected to transform the small spherical micelles of SME into giant wormlike aggregates.

    EXPERIMENTS: Stratifying films from SME solutions are formed and the heights of the steps are recorded. The viscosity of mixed SME + CAPB solutions is measured at various concentrations and weight ratios of the two surfactants.

    FINDINGS: By theoretical analysis of the foam film data, we established that at 30-100 mM SME spherical micelles are formed and their aggregation number was determined. The addition of calcium ions, as in hard water, does not produce significant effect. However, SME and CAPB exhibit a strong synergism with respect to micelle growth as indicated by the high solution's viscosity. For this reason, the SME + CAPB mixtures represent a promising system for formulations in personal-care and house-hold detergency, having in mind also other useful properties of SME, such as high hard water tolerance, biodegradability and skin compatibility.

  5. Yavrukova VI, Radulova GM, Danov KD, Kralchevsky PA, Xu H, Ung YW, et al.
    Adv Colloid Interface Sci, 2020 Jan;275:102062.
    PMID: 31718784 DOI: 10.1016/j.cis.2019.102062
    This is a review article on the rheological properties of mixed solutions of sulfonated methyl esters (SME) and cocamidopropyl betaine (CAPB), which are related to the synergistic growth of giant micelles. Effects of additives, such as fatty alcohols, cocamide monoethanolamine (CMEA) and salt, which are expected to boost the growth of wormlike micelles, are studied. We report and systematize the most significant observed effects with an emphasis on the interpretation at molecular level and understanding the rheological behavior of these systems. The experiments show that the mixing of SME and CAPB produces a significant rise of viscosity, which is greater than in the mixed solutions of sodium dodecyl sulfate and CAPB. The addition of fatty alcohols, CMEA and cationic polymer, leads to broadening of the synergistic peak in viscosity without any pronounced effect on its height. The addition of NaCl leads to a typical salt curve with high maximum, but in the presence of dodecanol this maximum is much lower. At lower salt concentrations, the fatty alcohol acts as a thickener, whereas at higher salt concentrations - as a thinning agent. Depending on the shape of the frequency dependences of the measured storage and loss moduli, G' and G", the investigated micellar solutions behave as systems of standard or nonstandard rheological behavior. The systems with standard behavior obey the Maxwell viscoelastic model (at least) up to the crossover point (G' = G") and can be analyzed in terms of the Cates reptation-reaction model. The systems with nonstandard rheological behavior obey the Maxwell model only in a restricted domain below the crossover frequency; they can be analyzed in the framework of an augmented version of the Maxwell model. The methodology for data analysis and interpretation could be applied to any other viscoelastic micellar system.
  6. Xu H, Thomas RK, Penfold J, Li PX, Ma K, Welbourne RJL, et al.
    J Colloid Interface Sci, 2018 Feb 15;512:231-238.
    PMID: 29073464 DOI: 10.1016/j.jcis.2017.10.064
    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C14MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na+, Ca2+, and Al3+. In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl2 and AlCl3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl2 only monolayer adsorption is observed. However at higher AlCl3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl3 concentrations.
  7. Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, et al.
    J Colloid Interface Sci, 2021 Nov;601:474-485.
    PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147
    HYPOTHESIS: Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures.

    EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.

  8. Xu H, Li P, Ma K, Welbourn RJL, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Jan 01;533:154-160.
    PMID: 30153592 DOI: 10.1016/j.jcis.2018.08.061
    The strong binding of Al3+ trivalent counterions to the anionic surfactants sodium polyethylene glycol monoalkyl ether sulfate and α-methyl ester sulfonate results in surface multilayer formation at the air-water interface. In contrast the divalent and monovalent counterions Ca2+ and Na+ result only in monolayer adsorption. Competitive counterion adsorption has been extensively studied in the context of surfactant precipitation and re-dissolution, but remains an important feature in understanding this surface ordering and how it can be manipulated. The α-methyl ester sulfonate surfactants are a promising class of anionic surfactants which have much potential for improved performance in many applications, greater tolerance to extreme solvent conditions such as water hardness, biocompatibility and sustainable production. Hence in this study we have used neutron reflectivity to extend previous studies on the surface ordering of the α-methyl ester sulfonate surfactant, sodium tetradecanoic 2-sulfo 1-methyl ester, in the presence of electrolyte to investigate the role of binary mixtures of electrolytes, AlCl3/CaCl2, and AlCl3/MgCl2. In the mixed electrolytes the evolution of the surface structure, from monolayer to multilayer with increasing AlCl3 concentration, is observed. It is broadly similar to that reported for the addition of only AlCl3. However with increasing CaCl2 concentration the structural evolution is shifted progressively to higher AlCl3 concentrations. Similar observations occur for the AlCl3/MgCl2 mixtures. However the presence of the MgCl2 results in an additional phenomenon; the partial co-adsorption of a more compact lamellar structure which exists until the highest AlCl3 concentrations. The results demonstrate the importance of the competitive adsorption of different counterions in driving and controlling the formation of surface multilayer structures with anionic surfactants. Furthermore it offers a facile route to the manipulation of these surface structures.
  9. Wang Z, Li P, Ma K, Chen Y, Campana M, Penfold J, et al.
    J Colloid Interface Sci, 2019 May 15;544:293-302.
    PMID: 30861434 DOI: 10.1016/j.jcis.2019.03.011
    The transition from monolayer to multilayer adsorption at the air-water interface in the presence of multivalent counterions has been demonstrated for a limited range of anionic surfactants which exhibit increased tolerance to precipitation in the presence of multivalent counterions. Understanding the role of molecular structure in determining the transition to surface ordering is an important aspect of the phenomenon. The focus of the paper is on the alkyl ester sulfonate, AES, surfactants; a promising group of anionic surfactants, with the potential for improved performance and biocompatibility. Neutron reflectivity measurements were made in aqueous solution and in the presence of NaCl, CaCl2, MgCl2 and AlCl3, for a range of alkyl ester sulfonate surfactants, in which the headgroup and alkyl chain geometries were manipulated. In the regions of monolayer adsorption changing the AES headgroup and alkyl chain geometries results in an increased saturation adsorption and in a more gradual decrease in the adsorption at low concentrations, consistent with a greater adsorption efficiency. Changing the AES headgroup and alkyl chain geometries also results in changes in the transition from monolayer adsorption to more ordered surface structures with the addition of AlCl3 and mixed multivalent electrolytes. A more limited surface layering is observed for the ethyl ester sulfonate, EES, with a C14 alkyl chain. Replacing the C14 alkyl chain with a C18 isostearic chain results in only monolayer adsorption. The results demonstrate the role and importance of the surfactant molecular structure in determining the nature of the surface adsorption in the presence of different electrolytes, and in the tendency to form extended surface multilayer structures.
  10. Xu H, Li P, Ma K, Welbourn RJL, Penfold J, Roberts DW, et al.
    Langmuir, 2017 09 26;33(38):9944-9953.
    PMID: 28871785 DOI: 10.1021/acs.langmuir.7b02725
    We describe a new laboratory synthesis of the α-methyl ester sulfonates based on direct sulfonation of the methyl ester by SO3 introduced from the vapor phase. This was used to synthesize a chain deuterated sample of αC14MES, which was then used to measure the surface excess of αC14MES directly at the air/water interface over a wide range of concentration using neutron reflection. The adsorption isotherm could be fitted to an empirical equation close to a Langmuir isotherm and gave a limiting surface excess of (3.4 ± 0.1) × 10-6 mol m-2 in the absence of added electrolyte. The neutron-measured surface excesses were combined with the integrated Gibbs equation to fit the variation in surface tension with concentration (σ-ln C curve). The fit was exact provided that we used a prefactor consistent with the counterion at the surface being an impurity divalent ion, as has previously been found for sodium diethylhexylsulfosuccinate (aerosol OT or AOT) and various perfluorooctanoates. The critical micelle concentration (CMC) was determined from this fit to be 2.4 ± 0.3 mM in the absence of electrolyte. In the presence of 100 mM NaCl, this contamination was suppressed and the σ-ln C curve could be fitted using the integrated Gibbs equation with the expected prefactor of 1. The new data were used to reinterpret measurements by Danov et al. on an unpurified sample of αC14MES for which computer refinement was used to try to eliminate the effects of the impurities.
  11. Yavrukova VI, Danov KD, Slavova TG, Stanimirova RD, Wei Ung Y, Tong Kim Suan A, et al.
    J Colloid Interface Sci, 2024 Jan 22;660:896-906.
    PMID: 38280282 DOI: 10.1016/j.jcis.2024.01.127
    HYPOTHESIS: Methyl ester sulfonates (MES) show limited water solubility at lower temperatures (Krafft point). One way to increase their solubility below their Krafft points is to incorporate them in anionic surfactant micelles. The electrostatic interactions between the ionic surfactant molecules and charged micelles play an important role for the degree of MES solubility.

    EXPERIMENTS: The solubility and electrolytic conductivity for binary and ternary surfactant mixtures of MES with anionic sodium alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate with two ethylene oxide groups (SLES-2EO) at 5 °C during long-term storage were measured. Phase diagrams were established; a general phase separation theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general phase separation model for ionic surfactant mixtures is convenient for construction of such complex phase diagrams and provides information on the concentrations of all components of the complex solution and on the micellar electrostatic potential. The obtained maximal MES mole fraction of transparent micellar solutions could be of interest to increase the range of applicability of MES-surfactants.

  12. Wang Z, Li P, Ma K, Chen Y, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Sep 05;557:124-134.
    PMID: 31518834 DOI: 10.1016/j.jcis.2019.09.016
    The ester sulfonate anionic surfactants are a potentially valuable class of sustainable surfactants. The micellar growth, associated rheological changes, and the onset of precipitation are important consequences of the addition of electrolyte and especially multi-valent electrolytes in anionic surfactants. Small angle neutron scattering, SANS, has been used to investigate the self-assembly and the impact of different valence electrolytes on the self-assembly of a range of ester sulfonate surfactants with subtly different molecular structures. The results show that in the absence of electrolyte small globular micelles form, and in the presence of NaCl, and AlCl3 relatively modest micellar growth occurs before the onset of precipitation. The micellar growth is more pronounced for the longer unbranched and branched alkyl chain lengths. Whereas changing the headgroup geometry from methyl ester to ethyl ester has in general a less profound impact. The study highlights the importance of relative counterion binding strengths and shows how the surfactant structure affects the counterion binding and hence the micelle structure. The results have important consequences for the response of such surfactants to different operational environments.
  13. Xu H, Li P, Ma K, Welbourn RJL, Doutch J, Penfold J, et al.
    J Colloid Interface Sci, 2018 Apr 15;516:456-465.
    PMID: 29408135 DOI: 10.1016/j.jcis.2018.01.086
    The α-methyl ester sulfonate, MES, anionic surfactants are a potentially important class of sustainable surfactants for a wide range of applications. The eutectic-like Kraft point minimum in the C16 and C18-MES mixtures is an important feature of that potential. Understanding their individual adsorption properties and the surface mixing of the eutectic mixtures are key to their wider exploitation. Neutron reflectivity has been used to investigate the adsorption at the air-water interface of the C16 and C18-MES surfactants and the eutectic mixture of C16 and C18-MES, in aqueous solution and in electrolyte. The micelle mixing of the eutectic mixture is investigated using small angle neutron scattering. The adsorption isotherms for C14 to C18-MES are found to scale with their critical micelle concentration value. The surface and micelle compositions of the C16 and C18-MES eutectic mixture differ from the eutectic composition; with compositions in the limit of high concentrations richer in C16-MES. The mixing properties are described by the pseudo phase approximation with a repulsive interaction between the two surfactants. The impact of the multivalent ions Al3+ on the adsorption at the air-water interface results in a transition from monolayer to multilayer adsorption.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links