METHODS: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days.
RESULTS: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs.
CONCLUSIONS: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically.
METHODS: We implemented a strategy involving a 9-element bundle, education, surveillance of CAUTI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CAUTI rates and performance feedback. This was executed in 299 ICUs across 32 low- and middle-income countries. The dependent variable was CAUTI per 1,000 UC days, assessed at baseline and throughout the intervention, in the second month, third month, 4 to 15 months, 16 to 27 months, and 28 to 39 months. Comparisons were made using a 2-sample t test, and the exposure-outcome relationship was explored using a generalized linear mixed model with a Poisson distribution.
RESULTS: Over the course of 978,364 patient days, 150,258 patients utilized 652,053 UC-days. The rates of CAUTI per 1,000 UC days were measured. The rates decreased from 14.89 during the baseline period to 5.51 in the second month (risk ratio [RR] = 0.37; 95% confidence interval [CI] = 0.34-0.39; P
METHODS: Prospective data from patients hospitalized in ICUs were collected through INICC Surveillance Online System. CDC-NHSN definitions for device-associated healthcare-associated infection (DA-HAI) were applied.
RESULTS: We collected data from 428,847 patients, for an aggregate of 2,815,402 bed-days, 1,468,216 central line (CL)-days, 1,053,330 mechanical ventilator (MV)-days, 1,740,776 urinary catheter (UC)-days. We found 7,785 CL-associated bloodstream infections (CLAB), 12,085 ventilator-associated events (VAE), and 5,509 UC-associated urinary tract infections (CAUTI). Pooled DA-HAI rates were 5.91% and 9.01 DA-HAIs/1,000 bed-days. Pooled CLAB rate was 5.30/1,000 CL-days; VAE rate was 11.47/1,000 MV-days, and CAUTI rate was 3.16/1,000 UC-days. P aeruginosa was non-susceptible (NS) to imipenem in 52.72% of cases; to colistin in 10.38%; to ceftazidime in 50%; to ciprofloxacin in 40.28%; and to amikacin in 34.05%. Klebsiella spp was NS to imipenem in 49.16%; to ceftazidime in 78.01%; to ciprofloxacin in 66.26%; and to amikacin in 42.45%. coagulase-negative Staphylococci and S aureus were NS to oxacillin in 91.44% and 56.03%, respectively. Enterococcus spp was NS to vancomycin in 42.31% of the cases.
CONCLUSIONS: DA-HAI rates and bacterial resistance are high and continuous efforts are needed to reduce them.
DESIGN: A prospective cohort study.
SETTING: The study was conducted across 623 ICUs of 224 hospitals in 114 cities in 37 African, Asian, Eastern European, Latin American, and Middle Eastern countries.
PARTICIPANTS: The study included 169,036 patients, hospitalized for 1,166,593 patient days.
METHODS: Data collection took place from January 1, 2014, to February 12, 2022. We identified CAUTI rates per 1,000 UC days and UC device utilization (DU) ratios stratified by country, by ICU type, by facility ownership type, by World Bank country classification by income level, and by UC type. To estimate CAUTI risk factors, we analyzed 11 variables using multiple logistic regression.
RESULTS: Participant patients acquired 2,010 CAUTIs. The pooled CAUTI rate was 2.83 per 1,000 UC days. The highest CAUTI rate was associated with the use of suprapubic catheters (3.93 CAUTIs per 1,000 UC days); with patients hospitalized in Eastern Europe (14.03) and in Asia (6.28); with patients hospitalized in trauma (7.97), neurologic (6.28), and neurosurgical ICUs (4.95); with patients hospitalized in lower-middle-income countries (3.05); and with patients in public hospitals (5.89).The following variables were independently associated with CAUTI: Age (adjusted odds ratio [aOR], 1.01; P < .0001), female sex (aOR, 1.39; P < .0001), length of stay (LOS) before CAUTI-acquisition (aOR, 1.05; P < .0001), UC DU ratio (aOR, 1.09; P < .0001), public facilities (aOR, 2.24; P < .0001), and neurologic ICUs (aOR, 11.49; P < .0001).
CONCLUSIONS: CAUTI rates are higher in patients with suprapubic catheters, in middle-income countries, in public hospitals, in trauma and neurologic ICUs, and in Eastern European and Asian facilities.Based on findings regarding risk factors for CAUTI, focus on reducing LOS and UC utilization is warranted, as well as implementing evidence-based CAUTI-prevention recommendations.
DESIGN: Prospective cohort study.
SETTING: This study was conducted across 743 ICUs of 282 hospitals in 144 cities in 42 Asian, African, European, Latin American, and Middle Eastern countries.
PARTICIPANTS: The study included patients admitted to ICUs across 24 years.
RESULTS: In total, 289,643 patients were followed during 1,951,405 patient days and acquired 8,236 VAPs. We analyzed 10 independent variables. Multiple logistic regression identified the following independent VAP RFs: male sex (adjusted odds ratio [aOR], 1.22; 95% confidence interval [CI], 1.16-1.28; P < .0001); longer length of stay (LOS), which increased the risk 7% per day (aOR, 1.07; 95% CI, 1.07-1.08; P < .0001); mechanical ventilation (MV) utilization ratio (aOR, 1.27; 95% CI, 1.23-1.31; P < .0001); continuous positive airway pressure (CPAP), which was associated with the highest risk (aOR, 13.38; 95% CI, 11.57-15.48; P < .0001); tracheostomy connected to a MV, which was associated with the next-highest risk (aOR, 8.31; 95% CI, 7.21-9.58; P < .0001); endotracheal tube connected to a MV (aOR, 6.76; 95% CI, 6.34-7.21; P < .0001); surgical hospitalization (aOR, 1.23; 95% CI, 1.17-1.29; P < .0001); admission to a public hospital (aOR, 1.59; 95% CI, 1.35-1.86; P < .0001); middle-income country (aOR, 1.22; 95% CI, 15-1.29; P < .0001); admission to an adult-oncology ICU, which was associated with the highest risk (aOR, 4.05; 95% CI, 3.22-5.09; P < .0001), admission to a neurologic ICU, which was associated with the next-highest risk (aOR, 2.48; 95% CI, 1.78-3.45; P < .0001); and admission to a respiratory ICU (aOR, 2.35; 95% CI, 1.79-3.07; P < .0001). Admission to a coronary ICU showed the lowest risk (aOR, 0.63; 95% CI, 0.51-0.77; P < .0001).
CONCLUSIONS: Some identified VAP RFs are unlikely to change: sex, hospitalization type, ICU type, facility ownership, and country income level. Based on our results, we recommend focusing on strategies to reduce LOS, to reduce the MV utilization ratio, to limit CPAP use and implementing a set of evidence-based VAP prevention recommendations.
METHODS: We implemented a multidimensional approach and an 8-component bundle in 374 ICUs across 35 low and middle-income countries (LMICs) from Latin-America, Asia, Eastern-Europe, and the Middle-East, to reduce VAP rates in ICUs. The VAP rate per 1000 mechanical ventilator (MV)-days was measured at baseline and during intervention at the 2nd month, 3rd month, 4-15 month, 16-27 month, and 28-39 month periods.
RESULTS: 174,987 patients, during 1,201,592 patient-days, used 463,592 MV-days. VAP per 1000 MV-days rates decreased from 28.46 at baseline to 17.58 at the 2nd month (RR = 0.61; 95% CI = 0.58-0.65; P