Displaying all 4 publications

Abstract:
Sort:
  1. Müller A, Wouters EF, Koul P, Welte T, Harrabi I, Rashid A, et al.
    Pulmonology, 2024 Apr 13.
    PMID: 38614859 DOI: 10.1016/j.pulmoe.2024.03.005
    BACKGROUND: Dyspnoea is a common symptom of respiratory disease. However, data on its prevalence in general populations and its association with lung function are limited and are mainly from high-income countries. The aims of this study were to estimate the prevalence of dyspnoea across several world regions, and to investigate the association of dyspnoea with lung function.

    METHODS: Dyspnoea was assessed, and lung function measured in 25,806 adult participants of the multinational Burden of Obstructive Lung Disease study. Dyspnoea was defined as ≥2 on the modified Medical Research Council (mMRC) dyspnoea scale. The prevalence of dyspnoea was estimated for each of the study sites and compared across countries and world regions. Multivariable logistic regression was used to assess the association of dyspnoea with lung function in each site. Results were then pooled using random-effects meta-analysis.

    RESULTS: The prevalence of dyspnoea varied widely across sites without a clear geographical pattern. The mean prevalence of dyspnoea was 13.7 % (SD=8.2 %), ranging from 0 % in Mysore (India) to 28.8 % in Nampicuan-Talugtug (Philippines). Dyspnoea was strongly associated with both spirometry restriction (FVC

  2. Knox-Brown B, Patel J, Potts J, Ahmed R, Aquart-Stewart A, Cherkaski HH, et al.
    Lancet Glob Health, 2023 Jan;11(1):e69-e82.
    PMID: 36521955 DOI: 10.1016/S2214-109X(22)00456-9
    BACKGROUND: Small airways obstruction is a common feature of obstructive lung diseases. Research is scarce on small airways obstruction, its global prevalence, and risk factors. We aimed to estimate the prevalence of small airways obstruction, examine the associated risk factors, and compare the findings for two different spirometry parameters.

    METHODS: The Burden of Obstructive Lung Disease study is a multinational cross-sectional study of 41 municipalities in 34 countries across all WHO regions. Adults aged 40 years or older who were not living in an institution were eligible to participate. To ensure a representative sample, participants were selected from a random sample of the population according to a predefined site-specific sampling strategy. We included participants' data in this study if they completed the core study questionnaire and had acceptable spirometry according to predefined quality criteria. We excluded participants with a contraindication for lung function testing. We defined small airways obstruction as either mean forced expiratory flow rate between 25% and 75% of the forced vital capacity (FEF25-75) less than the lower limit of normal or forced expiratory volume in 3 s to forced vital capacity ratio (FEV3/FVC ratio) less than the lower limit of normal. We estimated the prevalence of pre-bronchodilator (ie, before administration of 200 μg salbutamol) and post-bronchodilator (ie, after administration of 200 μg salbutamol) small airways obstruction for each site. To identify risk factors for small airways obstruction, we performed multivariable regression analyses within each site and pooled estimates using random-effects meta-analysis.

    FINDINGS: 36 618 participants were recruited between Jan 2, 2003, and Dec 26, 2016. Data were collected from participants at recruitment. Of the recruited participants, 28 604 participants had acceptable spirometry and completed the core study questionnaire. Data were available for 26 443 participants for FEV3/FVC ratio and 25 961 participants for FEF25-75. Of the 26 443 participants included, 12 490 were men and 13 953 were women. Prevalence of pre-bronchodilator small airways obstruction ranged from 5% (34 of 624 participants) in Tartu, Estonia, to 34% (189 of 555 participants) in Mysore, India, for FEF25-75, and for FEV3/FVC ratio it ranged from 5% (31 of 684) in Riyadh, Saudi Arabia, to 31% (287 of 924) in Salzburg, Austria. Prevalence of post-bronchodilator small airways obstruction was universally lower. Risk factors significantly associated with FEV3/FVC ratio less than the lower limit of normal included increasing age, low BMI, active and passive smoking, low level of education, working in a dusty job for more than 10 years, previous tuberculosis, and family history of chronic obstructive pulmonary disease. Results were similar for FEF25-75, except for increasing age, which was associated with reduced odds of small airways obstruction.

    INTERPRETATION: Despite the wide geographical variation, small airways obstruction is common and more prevalent than chronic airflow obstruction worldwide. Small airways obstruction shows the same risk factors as chronic airflow obstruction. However, further research is required to investigate whether small airways obstruction is also associated with respiratory symptoms and lung function decline.

    FUNDING: National Heart and Lung Institute and Wellcome Trust.

    TRANSLATIONS: For the Dutch, Estonian, French, Icelandic, Malay, Marathi, Norwegian, Portuguese, Swedish and Urdu translations of the abstract see Supplementary Materials section.

  3. Knox-Brown B, Patel J, Potts J, Ahmed R, Aquart-Stewart A, Barbara C, et al.
    Respir Res, 2023 May 23;24(1):137.
    PMID: 37221593 DOI: 10.1186/s12931-023-02450-1
    BACKGROUND: Spirometric small airways obstruction (SAO) is common in the general population. Whether spirometric SAO is associated with respiratory symptoms, cardiometabolic diseases, and quality of life (QoL) is unknown.

    METHODS: Using data from the Burden of Obstructive Lung Disease study (N = 21,594), we defined spirometric SAO as the mean forced expiratory flow rate between 25 and 75% of the FVC (FEF25-75) less than the lower limit of normal (LLN) or the forced expiratory volume in 3 s to FVC ratio (FEV3/FVC) less than the LLN. We analysed data on respiratory symptoms, cardiometabolic diseases, and QoL collected using standardised questionnaires. We assessed the associations with spirometric SAO using multivariable regression models, and pooled site estimates using random effects meta-analysis. We conducted identical analyses for isolated spirometric SAO (i.e. with FEV1/FVC ≥ LLN).

    RESULTS: Almost a fifth of the participants had spirometric SAO (19% for FEF25-75; 17% for FEV3/FVC). Using FEF25-75, spirometric SAO was associated with dyspnoea (OR = 2.16, 95% CI 1.77-2.70), chronic cough (OR = 2.56, 95% CI 2.08-3.15), chronic phlegm (OR = 2.29, 95% CI 1.77-4.05), wheeze (OR = 2.87, 95% CI 2.50-3.40) and cardiovascular disease (OR = 1.30, 95% CI 1.11-1.52), but not hypertension or diabetes. Spirometric SAO was associated with worse physical and mental QoL. These associations were similar for FEV3/FVC. Isolated spirometric SAO (10% for FEF25-75; 6% for FEV3/FVC), was also associated with respiratory symptoms and cardiovascular disease.

    CONCLUSION: Spirometric SAO is associated with respiratory symptoms, cardiovascular disease, and QoL. Consideration should be given to the measurement of FEF25-75 and FEV3/FVC, in addition to traditional spirometry parameters.

  4. Amaral AFS, Potts J, Knox-Brown B, Bagkeris E, Harrabi I, Cherkaski HH, et al.
    Int J Epidemiol, 2023 Dec 25;52(6):e364-e373.
    PMID: 37862437 DOI: 10.1093/ije/dyad146
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links