Displaying all 2 publications

Abstract:
Sort:
  1. Prabhu NB, Adiga D, Kabekkodu SP, Bhat SK, Satyamoorthy K, Rai PS
    Environ Toxicol Pharmacol, 2022 Nov;96:104010.
    PMID: 36334871 DOI: 10.1016/j.etap.2022.104010
    Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by β-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.
  2. Prabhu NB, Vasishta S, Bhat SK, Joshi MB, Kabekkodu SP, Satyamoorthy K, et al.
    Environ Sci Pollut Res Int, 2023 May;30(23):64025-64035.
    PMID: 37060405 DOI: 10.1007/s11356-023-26820-w
    Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links