Displaying all 4 publications

Abstract:
Sort:
  1. Rajik M, Yusoff K
    Antivir Chem Chemother, 2011;21(4):151-4.
    PMID: 21602612 DOI: 10.3851/IMP1728
    Influenza A virus is a particularly problematic virus because of its ability to cause high levels of morbidity on a global scale within a remarkably short period of time. It also has the potential to kill very large numbers of people as occurred in the Spanish influenza pandemic in 1918. Options for antiviral therapy are limited because of the paucity of available drugs and the rapid mutation rate of the virus leading to the emergence of drug-resistant strains. The current H1N1 pandemic and potential threats posed by other strains highlight the need to develop novel therapeutic and prophylactic strategies. Here, we summarize the current state and recent developments of peptide-based inhibitors of influenza A virus.
  2. Chew MF, Tham HW, Rajik M, Sharifah SH
    J Appl Microbiol, 2015 Oct;119(4):1170-80.
    PMID: 26248692 DOI: 10.1111/jam.12921
    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action.
  3. Rajik M, Omar AR, Ideris A, Hassan SS, Yusoff K
    Int J Biol Sci, 2009 Aug 08;5(6):543-8.
    PMID: 19680476
    Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.
  4. Rajik M, Jahanshiri F, Omar AR, Ideris A, Hassan SS, Yusoff K
    Virol J, 2009;6:74.
    PMID: 19497129 DOI: 10.1186/1743-422X-6-74
    Avian influenza viruses (AIV) cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA), neuraminidase (NA), and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links