Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Omar N, Lim TS
    Methods Mol Biol, 2018;1701:25-44.
    PMID: 29116498 DOI: 10.1007/978-1-4939-7447-4_2
    This protocol describes the processes involved in the generation of human antibody libraries in Fab format. The antibody repertoire is derived from peripheral blood mononucleocytes focusing on different immunoglobulin isotypes. A two-step cloning process was used to generate a diverse human Fab library for subsequent selection by phage display. The method can be applied for the generation of both naive and immune antibody libraries. The naive repertoire allows for the library to be applied for the generation of human monoclonal antibodies against a broad range of target antigens making it a useful resource for antibody generation. However, the immune repertoire will be focused against target antigens from a particular disease. The protocol will focus on the generation of the library including the panning process.
    Matched MeSH terms: Peptide Library*
  2. Song BPC, Ch'ng ACW, Lim TS
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128455.
    PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455
    Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
    Matched MeSH terms: Peptide Library*
  3. Song BPC, Lai JY, Lim TS
    Methods Mol Biol, 2024;2793:21-40.
    PMID: 38526721 DOI: 10.1007/978-1-0716-3798-2_2
    Phage display antibody libraries have been successfully used as the essential tool to produce monoclonal antibodies against a plethora of targets ranging from diseases to native biologically important proteins as well as small molecules. It is well documented that diverse antibody genes are the major genetic source for the construction of a high-quality antibody library and selection of high-affinity antibodies. Naïve antibody libraries are derived using the IgM repertoire of healthy donors obtained from B-cells isolated from human peripheral blood mononuclear cell (PBMC). Single-chain fragment variable (scFv) is a routinely used format due to its smaller size and preference for phage display. The process involves the use of a two-step cloning method for library construction. The protocol also covers the biopanning process for target positive clone selection.
    Matched MeSH terms: Peptide Library
  4. Ishima Y, Mimono A, Tuan Giam Chuang V, Fukuda T, Kusumoto K, Okuhira K, et al.
    IUBMB Life, 2020 04;72(4):641-651.
    PMID: 31794135 DOI: 10.1002/iub.2203
    Deposition of amyloid protein, particularly Aβ1-42 , is a major contributor to the onset of Alzheimer's disease (AD). However, almost no deposition of Aβ in the peripheral tissues could be found. Human serum albumin (HSA), the most abundant protein in the blood, has been reported to inhibit amyloid formation through binding Aβ, which is believed to play an important role in the peripheral clearance of Aβ. We identified the Aβ binding site on HSA and developed HSA mutants with high binding capacities for Aβ using a phage display method. HSA fragment 187-385 (Domain II) was found to exhibit the highest binding capacity for Aβ compared with the other two HSA fragments. To elucidate the sequence that forms the binding site for Aβ on Domain II, a random screening of Domain II display phage biopanning was constructed. A number of mutants with higher Aβ binding capacities than the wild type were identified. These mutants exhibited stronger scavenging abilities than the wild type, as revealed via in vitro equilibrium dialysis of Aβ experiments. These findings provide useful basic data for developing a safer alternative therapy than Aβ vaccines and for application in plasma exchange as well as extracorporeal dialysis.
    Matched MeSH terms: Peptide Library*
  5. Lim TS, Chan SK
    Curr Pharm Des, 2016;22(43):6480-6489.
    PMID: 27669969 DOI: 10.2174/1381612822666160923111924
    BACKGROUND: Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries.

    METHODS: Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection.

    RESULTS: This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases.

    CONCLUSION: We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future.

    Matched MeSH terms: Peptide Library*
  6. Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS
    Mol Biol Rep, 2023 May;50(5):4653-4664.
    PMID: 37014570 DOI: 10.1007/s11033-023-08380-x
    Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
    Matched MeSH terms: Peptide Library
  7. Lim HT, Kok BH, Leow CY, Leow CH
    Fish Shellfish Immunol, 2023 Sep;140:108986.
    PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986
    Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
    Matched MeSH terms: Peptide Library
  8. Lim BN, Tye GJ, Choong YS, Ong EB, Ismail A, Lim TS
    Biotechnol Lett, 2014 Dec;36(12):2381-92.
    PMID: 25214212 DOI: 10.1007/s10529-014-1635-x
    Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
    Matched MeSH terms: Peptide Library*
  9. Siddiqui R, Kulsoom H, Lalani S, Khan NA
    Exp Parasitol, 2016 Jul;166:94-6.
    PMID: 27055361 DOI: 10.1016/j.exppara.2016.04.001
    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further.
    Matched MeSH terms: Peptide Library*
  10. Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS
    Anal Biochem, 2015 May 15;477:56-61.
    PMID: 25769419 DOI: 10.1016/j.ab.2015.02.026
    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
    Matched MeSH terms: Peptide Library*
  11. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
    Matched MeSH terms: Peptide Library*
  12. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Peptide Library*
  13. Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS
    Appl Biochem Biotechnol, 2018 Mar;184(3):852-868.
    PMID: 28884285 DOI: 10.1007/s12010-017-2582-5
    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 109 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
    Matched MeSH terms: Peptide Library*
  14. Ch'ng ACW, Hamidon NHB, Konthur Z, Lim TS
    Methods Mol Biol, 2018;1701:301-319.
    PMID: 29116512 DOI: 10.1007/978-1-4939-7447-4_16
    The application of recombinant human antibodies is growing rapidly mainly in the field of diagnostics and therapeutics. To identify antibodies against a specific antigen, panning selection is carried out using different display technologies. Phage display technology remains the preferred platform due to its robustness and efficiency in biopanning experiments. There are both manual and semi-automated panning selections using polystyrene plastic, magnetic beads, and nitrocellulose as the immobilizing solid surface. Magnetic nanoparticles allow for improved antigen binding due to their large surface area. The Kingfisher Flex magnetic particle processing system was originally designed to aid in RNA, DNA, and protein extraction using magnetic beads. However, the system can be programmed for antibody phage display panning. The automation allows for a reduction in human error and improves reproducibility in between selections with the preprogrammed movements. The system requires minimum human intervention to operate; however, human intervention is needed for post-panning steps like phage rescue. In addition, polyclonal and monoclonal ELISA can be performed using the semi-automated platform to evaluate the selected antibody clones. This chapter will summarize the suggested protocol from the panning stage till the monoclonal ELISA evaluation. Other than this, important notes on the possible optimization and troubleshooting are also included at the end of this chapter.
    Matched MeSH terms: Peptide Library*
  15. Chin CF, Choong YS, Lim TS
    Methods Mol Biol, 2018;1701:285-299.
    PMID: 29116511 DOI: 10.1007/978-1-4939-7447-4_15
    Antibody phage display has been widely established as the method of choice to generate monoclonal antibodies with various efficacies post hybridoma technology. This technique is a popular method which takes precedence over ease of methodology, time- and cost-savings with comparable outcomes to conventional methods. Phage display technology manipulates the genome of M13 bacteriophage to display large diverse collection of antibodies that is capable of binding to various targets (nucleic acids, peptides, proteins, and carbohydrates). This subsequently leads to the discovery of target-related antibody binders. There have been several different approaches adapted for antibody phage display over the years. This chapter focuses on the semi-automated phage display antibody biopanning method utilizing the MSIA™ streptavidin D.A.R.T's® system. The system employs the use of electronic multichannel pipettes with predefined programs to carry out the panning process. The method should also be adaptable to larger liquid handling instrumentations for higher throughput.
    Matched MeSH terms: Peptide Library*
  16. Chan SK, Lim TS
    Adv Exp Med Biol, 2017;1053:61-78.
    PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4
    The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
    Matched MeSH terms: Peptide Library*
  17. Yuen HL, Shamala D, Thong KL
    J Infect Dev Ctries, 2008 Aug 30;2(4):313-23.
    PMID: 19741295
    BACKGROUND: Heat shock proteins (HSPs) are known to be involved in the pathogenesis of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever. The objective of this study was to apply a phage display library to identify mimotopes of two HSPs, HSP90 and DnaK in S. Typhi.

    METHODOLOGY: A 12-mer random peptide library expressed on the surface of the filamentous phage, M13, was used to select the mimotopes of two S. Typhi heat shock proteins by biopanning with monoclonal antibodies (mAbs), DnaK and HSP90. The immunogenicity of the selected peptides was determined through binding affinity with polyclonal antibodies from pooled typhoid-confirmed patients' sera and purified HSPs mAb using Western blotting and ELISA.

    RESULTS: Five rounds of biopanning resulted in enrichment of phage clones expressing the binding motifs TDxSTRP and FPSHYWLYPPPT, respectively. The selected peptides showed strong immunoreactivity with patients' sera. Thus, monoclonal antibodies against HSP and patient sera can select common mimotopes from the random peptide library.

    CONCLUSION: These findings may provide fundamental information for further studies on diagnostic application or vaccine design against this aetiologic agent of typhoid fever.

    Matched MeSH terms: Peptide Library
  18. Ch'ng ACW, Ahmad A, Konthur Z, Lim TS
    Methods Mol Biol, 2019;1904:377-400.
    PMID: 30539481 DOI: 10.1007/978-1-4939-8958-4_18
    Panning is a common process used for antibody selection from phage antibody libraries. There are several methods developed for a similar purpose, namely streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips, magnetic beads, polystyrene immunotubes, and microtiter plate. The advantage of using a magnetic particle processor system is the ability to carry out phage display panning against multiple target antigens simultaneously in parallel. The system carries out the panning procedure using magnetic nanoparticles in microtiter plates. The entire incubation, wash, and elution process is then automated in this setup. The system also allows customization for the introduction of different panning stringencies. The nature of the biopanning process coupled with the limitation of the system means that minimal human intervention is required for the infection and phage packaging stage. However, the process still allows for rapid and reproducible antibody generation to be carried out.
    Matched MeSH terms: Peptide Library
  19. Abdo AIK, Nordin F, Tye GJ
    Int Immunopharmacol, 2024 Aug 20;137:112371.
    PMID: 38852516 DOI: 10.1016/j.intimp.2024.112371
    IL-23 is a double-subunit cytokine that plays an important role in shaping the immune response. IL-23 was found to be associated with several autoinflammatory diseases by generating sustained inflammatory loops that lead to tissue damage. Antibody neutralization of IL-23 was proven to be effective in ameliorating associated diseases. However, antibodies as large proteins have limited tissue penetration and tend to elicit anti-drug antibodies. Additionally, anti-IL-23 antibodies target only one subunit of IL-23 leaving the other one unneutralized. Here, we attempted to isolate a recycling single domain antibody by phage display. One of IL-23 subunits, p19, was expressed in E. coli fused to Gamillus protein to stabilize the α-helix-only p19. To remove Gamillus binders, two biopanning methods were investigated, first, preselection with Gamillus and second, challenge with IL-23 then on the subsequent round challenge with p19-Gam. The isolation of calcium-dependent and pH-dependent recycling binders was performed with EDTA and citrate buffers respectively. Both methods of panning failed to isolate high-affinity and specific p19 recycling binders, while from the second panning method, a high affinity and specific p19 standard binder, namely H11, was successfully isolated. H11 significantly inhibited the gene expression of IL-17 and IL-22 in IL-23-challenged PBMCs indicating H11 specificity and neutralizing ability for IL-23. The new binder due to its small size can overcome antibodies limitations, also, it can be further engineered in the future for antigen clearance such as fusing it to cell penetrating peptides, granting H11 the ability to clear excess IL-23 and enhancing its potential therapeutic effect.
    Matched MeSH terms: Peptide Library
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links