METHODS: The JBI manual for evidence synthesis was used to conduct a scoping study. Until September 2021, an electronic search was performed using four databases (Medline, CINAHL, Scopus, ASEAN Citation Index). Only the studies that were carried out in Southeast Asia were chosen.
RESULTS: Forty-one articles were chosen in the final review from 6,873 articles found during the initial search. Most of the studies reported the implementation of technological intervention combined with conventional therapies in stroke rehabilitation. Advanced and simple technologies were found such as robotics, virtual reality, telerehabilitation, motion capture, assistive devices, and mobility training from Singapore, Thailand, Malaysia, and Indonesia. The majority of the studies show that technological interventions can enhance the recovery period of stroke survivors. The consultation session suggested that the technological interventions should facilitate the needs of the survivors, caregivers, and practitioners during the rehabilitation.
CONCLUSIONS: The integration of technology into conventional therapies has shown a positive outcome and show significant improvement during stroke recovery. Future studies are recommended to investigate the potential of home-based technological intervention and lower extremities.
MATERIALS AND METHODS: This study adhered rigorously to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature searches. The literature databases, including PubMed, Embase, Cochrane, and Scopus were systematically searched individually. The methodological quality of the incorporated studies underwent assessment utilizing the radiomics quality score (RQS) tool. A random-effects meta-analysis employing the Harrell concordance index (C-index) was conducted to evaluate the performance of all radiomics models.
RESULTS: Among the 388 studies retrieved, 24 studies encompassing a total of 6,978 cases were incorporated into the systematic review. Furthermore, eight studies, focusing on overall survival as an endpoint, were included in the meta-analysis. The meta-analysis revealed that the estimated random effect of the C-index for all studies utilizing radiomics alone was 0.77 (0.71-0.82), with a substantial degree of heterogeneity indicated by an I2 of 80.17%.
CONCLUSIONS: Based on this review, prognostic modeling utilizing radiomics has demonstrated enhanced efficacy for head and neck cancers; however, there remains room for improvement in this approach. In the future, advancements are warranted in the integration of clinical parameters and multimodal features, balancing multicenter data, as well as in feature screening and model construction within this field.