Displaying all 3 publications

Abstract:
Sort:
  1. Shawal NBM, Razali NA, Hairom NHH, Yatim NII, Rasit N, Harun MHC, et al.
    Water Sci Technol, 2023 Dec;88(12):3142-3150.
    PMID: 38154800 DOI: 10.2166/wst.2023.398
    This study aims to recover the used coagulants from two water treatment plants via acidification technique. The water treatment sludge (WTS) was acidified with sulfuric acid (H2SO-4) at variable normalities (0.5, 1, 1.5, 2.0 and 2.5 N). The surface morphology and functionalities of both recovered coagulants were analysed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The performance of recovered coagulants was tested for turbidity removal in surface water treatment at different coagulant dosages and pH. It was found that the optimum normality of H2SO4 for recovered alum was 1.5 N, where 66% turbidity removal was recorded. The recovered PAC treated with 1.0 N H2SO4 indicated high turbidity removal percentage, which was 50.5%. The turbidity removal increased with increasing coagulant dosage. More than 80% turbidity removal was achieved with 40 mg/L dosage of recovered alum and recovered PAC. Maximum removal (85%) was observed with 50 mg/L dosage of recovered alum. For commercial coagulant, the turbidity removal was higher, with a difference of up to 6% in favor of recovered alum. The potential reuse of coagulants can be explored in order to reduce the operating costs and promotes the reduction of WTS disposal.
  2. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
  3. Mohamad NA, Hamzah S, Che Harun MH, Ali A, Rasit N, Awang M, et al.
    Chemosphere, 2021 Oct;281:130873.
    PMID: 34022596 DOI: 10.1016/j.chemosphere.2021.130873
    Palm oil mill effluent (POME) is highly polluted wastewater that is to the environment if discharged directly to water source without proper treatment. Thus, a highly efficient treatment with reasonable cost is needed. This study reports the coagulation treatment of POME using integrated copperas and calcium hydroxide. The properties of copperas were determined using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Coagulation was conducted using jar test experiments for various coagulant formulations and dosages (1000-5000 mg/L), initial pH (4-10), stirring speed (100-300 rpm), and sedimentation time (30-180 min). The characterisation results show that copperas has a compact gel network structure with strong O-H stretching and monoclinic crystal structure. The effectiveness of integrated copperas and calcium hydroxide (Ca(OH)2) with the formulation of 80:20 removed 77.6%, 73.4%, and 57.0% of turbidity, colour, and chemical oxygen demand (COD), respectively. Furthermore, the integration of copperas and Ca(OH)2 produced heavier flocs (ferric hydroxide), which improved gravity settling. The coagulation equilibrium analysis shows that the Langmuir model best described the anaerobic POME sample as the process exhibited monolayer adsorption. The results of this study show that copperas with the aid of Ca(OH)2 demonstrated high potential in the removal of those parameters from POME with acceptable final pH for discharge. The utilisation of this by-product as a coagulant in effluent treatment can unlock the potential of copperas for wider applications, improve its marketability, and reduce gypsum waste generation from the TiO2 industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links