Displaying all 6 publications

Abstract:
Sort:
  1. Walayat K, Ahmad M, Rasul A, Aslam S, Anjum MN, Sultan S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):855-860.
    PMID: 32863262
    The drug resistance phenomenon in microbes is resulting in the ineffectiveness of available drugs to treat the infections. Thus, there is a continued need to discover new molecules to combat the drug resistance phenomenon. Norfloxacin is a fluoroquinolone antibiotic that is used for the treatment of urinary tract infections. In this research work, norfloxacin is structurally modified by hybridizing with a range of substituted acetohydrazidic moieties through a multistep reaction. The first step involves the coupling of norfloxacin 1 with methyl chloroacetate followed by the treatment with hydrazine hydrate to result in corresponding acetohydrazide 3. A range of substituted benzaldehydes were reacted with the acetohydrazide to form the targeted series of norfloxacin derivatives 4a-i. The final compounds were screened for antimicrobial activity. Among the tested compounds, 4c, 4d, 4e and 4f displayed better antifungal activity against F.avenaceum, while compound 4c and 4e were active against F. bubigeum.
  2. Kua VMD, Rasul A, Sreenivasan S, Rasool B, Younis T, Lai NS
    Pak J Pharm Sci, 2019 Jul;32(4(Supplementary)):1797-1803.
    PMID: 31680075
    Leukemia is a type of blood cancer where abnormal and immature leucocytes are produced in the bone marrow. Methadone hydrochloride is a man-made drug that is commonly used in the maintenance treatment for drug addiction. The objective of this research was to determine the cytotoxic activity and apoptotic effects of methadone hydrochloride treatment towards two leukemia cell lines which are CCRF-CEM and HL-60. CCRF-CEM and HL-60 cells were treated with methadone hydrochloride for 24 and 48 hours to determine the cytotoxic activity. IC50 at 24 hours obtained for CCRF-CEM was 121.6μmol/L while IC50 for HL-60 cells was 97.18μmol/L. Result obtained from DNA fragmentation assay showed no characteristic DNA ladder pattern in CCRF-CEM leukemia cells treated with methadone hydrochloride. Characteristics DNA ladder pattern was observed in methadone hydrochloride treated HL-60 cells. Formation of comets was seen in methadone hydrochloride treated CCRF-CEM and HL-60 cells with varying degree of DNA damage. The comets formed by methadone hydrochloride treated HL-60 cells were more prominent as compared to methadone-treated CCRF-CEM cells. The expression of apoptotic-related proteins in methadone-treated CCRF-CEM and HL-60 cells were checked by incubating the cell lysate with Raybio® Human Apoptosis Antibody Array. Significant alterations in expression level of apoptosis-related proteins in methadone hydrochloride treated CCRF-CEM cells were found involving upregulation of caspase-8 expression and downregulation of survivin expression. Methadone hydrochloride induced apoptosis in HL-60 cells involved upregulation of Bid and caspase-8 expression and downregulation of Bcl-2, p21 and survivin expression.
  3. Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, et al.
    Front Cell Infect Microbiol, 2023;13:1061937.
    PMID: 36864886 DOI: 10.3389/fcimb.2023.1061937
    An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
  4. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
  5. Ahmad S, Jalil S, Zaib S, Aslam S, Ahmad M, Rasul A, et al.
    Eur J Pharm Sci, 2019 Apr 01;131:9-22.
    PMID: 30735822 DOI: 10.1016/j.ejps.2019.02.007
    We report the synthesis and biological evaluation of two new series of 2-amino-6-benzyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides and 2-amino-6-methyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides. The synthetic methodology involves a multistep reaction starting with methyl anthranilate which was coupled with methane sulfonyl chloride. The product of the reaction was subjected to N-benzylation and N-methylation reactions followed by ring closure with sodium hydride resulting in the formation of respective 2,1-benzothiazine 2,2-dioxides. These 2,1-benzothiazine precursors were subjected to multicomponent reaction with malononitrile and substituted benzaldehydes for the synthesis of two new series of pyranobenzothiazines (6a-r and 7a-r). The synthesized compounds were screened as selective inhibitors of monoamine oxidase A and monoamine oxidase B. The in vitro results suggested that compound 6d and 7q are the selective inhibitors of monoamine oxidase A, however, the selective and potent inhibitors of monoamine oxidase B included compounds 6h and 7r. Moreover, some dual inhibitors were noticed like 7l having more inhibitory activity towards both the isozymes. Moreover, the binding modes of the selective and potent inhibitors of monoamine oxidase A and B were investigated by molecular docking analysis. The results suggested that the synthetic derivatives may be potential towards the monoamine oxidase isozymes.
  6. Adnan M, Rasul A, Shah MA, Hussain G, Asrar M, Riaz A, et al.
    Anticancer Agents Med Chem, 2022;22(1):30-39.
    PMID: 33874875 DOI: 10.2174/1871520621666210419095829
    The identification and development of radioprotective agents have emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have the potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety, and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing a broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by the direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future; however, extensive investigations are still required to better understand their protection mechanisms.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links