Displaying all 7 publications

Abstract:
Sort:
  1. Rama Rao S, Liew TS, Yow YY, Ratnayeke S
    PLoS One, 2018;13(5):e0196582.
    PMID: 29734361 DOI: 10.1371/journal.pone.0196582
    Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management.
  2. Kannan A, Rama Rao S, Ratnayeke S, Yow YY
    PeerJ, 2020;8:e8755.
    PMID: 32274263 DOI: 10.7717/peerj.8755
    Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06-6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
  3. Sharma S, Chee-Yoong W, Kannan A, Rama Rao S, Abdul-Patah P, Ratnayeke S
    Ecol Evol, 2022 Dec;12(12):e9585.
    PMID: 36518624 DOI: 10.1002/ece3.9585
    Four species of otters occur in tropical Asia, and all face multiple threats to their survival. Studies of distribution and population trends of these otter species in Asia, where they occur sympatrically, are complicated by their elusive nature and difficulties with reliable identification of species in field surveys. In Malaysia, only three species, the smooth-coated otter, Asian small-clawed otter, and hairy-nosed otter have been reliably reported as residents. We designed a replicable and cost-efficient PCR-RFLP protocol to identify these three species. Using published reference sequences of mitochondrial regions, we designed and tested three PCR-RFLP protocols on DNA extracted from reference samples and 33 spraints of wild otters collected along the North Central Selangor Coast of Malaysia. We amplified and sequenced two fragments (450 and 200 bp) of the mt D-loop region and a 300-bp fragment of the mt ND4 gene using primer sets TanaD, TanaD-Mod, and OTR-ND4, respectively. Amplification products were digested with restriction enzymes to generate species-specific RFLP profiles. We analyzed the costs of all three protocols and compared these with the costs of sequencing for species identification. Amplification success was highest for the smallest PCR product, with the TanaD-Mod primer amplifying DNA from all 33 spraints. TanaD and OTR-ND4 primers amplified DNA from 60.6% and 63.6% spraints, respectively. PCR products of TanaD-Mod provided the expected species-specific RFLP profile for 32 (97%) of the spraints. PCR products of OTR-ND4 provided the expected RFLP profile for all 21 samples that amplified, but TanaD produced spurious bands and inconsistent RFLP profiles. The OTR-ND4 primer-enzyme protocol was the least expensive (437 USD) for processing 100 samples, followed by TanaD-Mod (455 USD). We suggest the use of both OTR-ND4 and TanaD-Mod protocols that show potential for highly efficient and reliable species identification from noninvasive genetic sampling of three Asian otter species. We expect our novel noninvasive PCR-RFLP analysis methods to facilitate population monitoring, ecological and behavioral studies on otters in tropical and subtropical Asia.
  4. Ratnayeke S, van Manen FT, Clements GR, Kulaimi NAM, Sharp SP
    PLoS One, 2018;13(4):e0194217.
    PMID: 29617402 DOI: 10.1371/journal.pone.0194217
    Mammalian carnivores play a vital role in ecosystem functioning. However, they are prone to extinction because of low population densities and growth rates, and high levels of persecution or exploitation. In tropical biodiversity hotspots such as Peninsular Malaysia, rapid conversion of natural habitats threatens the persistence of this vulnerable group of animals. Here, we carried out the first comprehensive literature review on 31 carnivore species reported to occur in Peninsular Malaysia and updated their probable distribution. We georeferenced 375 observations of 28 species of carnivore from 89 unique geographic locations using records spanning 1948 to 2014. Using the Getis-Ord Gi*statistic and weighted survey records by IUCN Red List status, we identified hotspots of species that were of conservation concern and built regression models to identify environmental and anthropogenic landscape factors associated with Getis-Ord Gi* z scores. Our analyses identified two carnivore hotspots that were spatially concordant with two of the peninsula's largest and most contiguous forest complexes, associated with Taman Negara National Park and Royal Belum State Park. A cold spot overlapped with the southwestern region of the Peninsula, reflecting the disappearance of carnivores with higher conservation rankings from increasingly fragmented natural habitats. Getis-Ord Gi* z scores were negatively associated with elevation, and positively associated with the proportion of natural land cover and distance from the capital city. Malaysia contains some of the world's most diverse carnivore assemblages, but recent rates of forest loss are some of the highest in the world. Reducing poaching and maintaining large, contiguous tracts of lowland forests will be crucial, not only for the persistence of threatened carnivores, but for many mammalian species in general.
  5. Lai WL, Chew J, Gatherer D, Ngoprasert D, Rahman S, Ayub Q, et al.
    J Hered, 2021 03 29;112(2):214-220.
    PMID: 33439997 DOI: 10.1093/jhered/esab004
    Sun bear populations are fragmented and at risk from habitat loss and exploitation for body parts. These threats are made worse by significant gaps in knowledge of sun bear population genetic diversity, population connectivity, and taxonomically significant management units. Using a complete sun bear mitochondrial genome, we developed a set of mitochondrial markers to assess haplotype variation and the evolutionary history of sun bears from Peninsular (West) Malaysia and Sabah (East Malaysia). Genetic samples from 28 sun bears from Peninsular Malaysia, 36 from Sabah, and 18 from Thailand were amplified with primers targeting a 1800 bp region of the mitochondrial genome including the complete mitochondrial control region and adjacent genes. Sequences were analyzed using phylogenetic methods. We identified 51 mitochondrial haplotypes among 82 sun bears. Phylogenetic and network analyses provided strong support for a deep split between Malaysian sun bears and sun bears in East Thailand and Yunnan province in China. The Malaysian lineage was further subdivided into two clades: Peninsular Malaysian and Malaysian Borneo (Sabah). Sun bears from Thailand occurred in both Sabah and Peninsular Malaysian clades. Our study supports recent findings that sun bears from Sundaland form a distinct clade from those in China and Indochina with Thailand possessing lineages from the three clades. Importantly, we demonstrate a more recent and clear genetic delineation between sun bears from the Malay Peninsula and Sabah indicating historical barriers to gene flow within the Sundaic region.
  6. Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, et al.
    Cells, 2021 08 25;10(9).
    PMID: 34571842 DOI: 10.3390/cells10092194
    Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
  7. Bombieri G, Penteriani V, Almasieh K, Ambarlı H, Ashrafzadeh MR, Das CS, et al.
    PLoS Biol, 2023 Jan;21(1):e3001946.
    PMID: 36719873 DOI: 10.1371/journal.pbio.3001946
    Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links