Displaying all 4 publications

Abstract:
Sort:
  1. Abd Razik BM, Osman H, Basiri A, Salhin A, Kia Y, Ezzat MO, et al.
    Bioorg Chem, 2014 Dec;57:162-168.
    PMID: 25462993 DOI: 10.1016/j.bioorg.2014.10.005
    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively.
  2. Razik BM, Osman H, Ezzat MO, Basiri A, Salhin A, Kia Y, et al.
    Med Chem, 2016;12(6):527-36.
    PMID: 26833077
    BACKGROUND: The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br.

    METHODS: The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking.

    RESULTS: Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions.

    CONCLUSION: An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.

  3. Basiri A, Abd Razik BM, Ezzat MO, Kia Y, Kumar RS, Almansour AI, et al.
    Bioorg Chem, 2017 12;75:210-216.
    PMID: 28987876 DOI: 10.1016/j.bioorg.2017.09.019
    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.
  4. Yusufzai SK, Osman H, Khan MS, Abd Razik BM, Ezzat MO, Mohamad S, et al.
    Chem Cent J, 2018 Jun 12;12(1):69.
    PMID: 29896651 DOI: 10.1186/s13065-018-0435-0
    A series of novel 4-thiazolidinone inhibitors SKYa-SKYg, containing coumarin as a core structure were synthesized via facile and efficient method. The structures of the synthesized compounds were established by extensive spectroscopic studies (FT IR, 1D NMR, 2D NMR, LC-MS) and elemental analysis. All the synthesized hybrids were further evaluated for their potential as anti-tubercular agents against Mycobacterium tuberculosis H37Rv ATCC 25618, and anti-bacterial agents against Escherichia coli, Enterobacter aerogenes, Salmonella typhi, Streptococcus pneumoniae and Staphylococcus aureus. Interestingly, the hybrids displayed potent bioactivity. However, compounds SKYc, SKYd, and SKYe appeared to be more effective against the tested bacterial strains, among which compound SKYb showed the highest inhibition against all the bacterial strains ranging from 41 to 165 μg/mL, as compared to the standards, streptomycin, kanamycin and vancomycin. Moreover, derivative SKYa was found to be the strongest against M. tuberculosis (83 μg/mL). Additionally, the anti-dengue potential of the coumarin hybrids as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors was calculated using computational molecular docking approach, with reference to the standards 4-hydroxypanduratin, panduratin and ethyl 3-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy)propanoate with DS of - 3.379, - 3.189 and - 3.381, respectively. The docking results revealed that the synthesized hybrids exhibited potent anti-dengue activity among which compounds SKYf, SKYd, SKYc and SKYe were found to be the best ones with docking scores of - 4.014, - 3.964, - 3.905 and - 3.889. In summary, we discovered 4-thiazolidinone coumarin derivatives as a new scaffold that may eventually yield useful compounds in the treatment of bacterial and viral infections.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links