A total of 87 market fish samples representing five types of fish were evaluated for the presence of Aeromonas spp. Of the samples examined, 69%, 55%, 11.5% and 2.3% harbored Aeromonas spp., A. veronii biovar sobria, A. hydrophila and A. caviae, respectively. The 60 isolated Aeromonas spp. strains were further examined for hemolytic activity, resistance to antimicrobial agents and presence of plasmids. Hemolytic activity varied widely among the isolated strains. Though all the isolates demonstrated resistance to three or more of the antibiotics tested, all were susceptible to ceptazidime. Thirty-four (56.7%) of the sixty isolates harbored plasmids, with sizes ranging from 2.3 to 15.7 kb. These results indicate that hemolytic, multiple antibiotic resistant and genetically diverse aeromonads are easily recovered from fish in this region.
Eighteen Bifidobacterium strains were tested for their susceptibility to a range of antimicrobial agents. All the strains tested, including the reference culture Lactobacillus acidophilus CH2, were susceptible to several groups of antimicrobial agents, they were cephalosporin (cefamandole, cefazolin, cefaperazone, cefoxitin), polypeptide (bacitracin), macrolide (erythromycin), penicillin (amoxicillin), phenicol (chloramphenicol) and beta-lactam (imipenem). Fourteen strains were resistant to more than 10 antibiotics. The reference culture was resistant to only three antibiotics. The results showed that bifidobacteria are resistant to a wide range of antimicrobial agents.
Enterococcus species isolated from poultry sources were characterized for their resistance to antibiotics, plasmid content, presence of van genes and their diversity by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The results showed that all isolates were multi-resistance to the antibiotics tested. Ampicillin (15/70) followed by chloramphenicol (37/70) were the most active antibiotics tested against the Enterococcus spp. isolates, while the overall resistant rates against the other antibiotics were between 64.3% to 100%. All vancomycin-resistant E. faecalis, E. durans, E. hirae and E. faecium isolates tested by the disk diffusion assay were positive in PCR detection for presence of vanA gene. All E. casseliflavus isolates were positive for vanC2/C3 gene. However, none of the Enterococcus spp. isolates were positive for vanB and vanC1 genes. Plasmids ranging in sizes between 1.1 to ca. 35.8 MDa were detected in 38/70 of the Enterococcus isolates. When the genetic relationship among all isolates of the individual species were tested by RAPD-PCR, genetic differences detected suggested a high genetic polymorphisms of isolates in each individual species. Our results indicates that further epidemiological studies are necessary to elucidate the role of food animals as reservoir of VRE and the public health significance of infections caused by Enterococcus spp.