The disease Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). The bacterial cell-wall consists of peptidoglycan layer maintains the cellular integrity and cell viability. The main problem resides in the cell cycle of Mycobacterium tuberculosis in its quiescent form which is not targeted by any drugs hence there is an immediate need for new antibiotics to target the cell wall. The current study deals with the dTDP-4-dehydrorahmnose reductase (RmlD) which is the final enzyme in the series of cell-wall proteins of Mtb. The RmlD is a part of Carbohydrate biosynthesis has been considered as a good drug target for the novel class of antibiotics. Our study begins with the protein structure prediction, Homology studies were conducted using the Phyre2 web server. The structure is then refined and subjected to molecular dynamics simulations for 50 ns using GROMACS. The clustering analysis has been carried out and generated 41 clusters with 2 Å as the cut-off. Blind docking virtual screening was performed against RmlD protein using the Super Natural-II database with AutoDock4.0. its results helped to screen top ligands based on best binding energies. In both dockings, there are some common residues in which the ligands are interacting and forming the Hydrogen bonds such as Asp-105, Val-158, Thr-160, Gly-161, Arg-224, Arg-256. The ligand-567 giving the best results by being in the top-3 of all the clusters in both blind docking as well as the active-site docking. Hence ligand-567 can be a potential inhibitor of RmlD which can further inhibit the cell-wall synthesis of Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, Ksv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9-HSA complex. The binding constant of Tyr 9-HSA interaction was found to lie within the range 3.48-1.69 × 105 M-1 at three different temperatures, i.e. 15 °C, 25 °C and 35 °C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug-HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein's thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow's Site I of HSA as the preferred Tyr 9 binding site. Communicated by Ramaswamy H. Sarma.
Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, K sv with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104 M-1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol-1 K-1 and ΔH = +13.09 kJ mol-1 ) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.
Binding of a potent anticancer agent, ponatinib (PTB) to human serum albumin (HSA), main ligand transporter in blood plasma was analyzed with several spectral techniques such as fluorescence, absorption and circular dichroism along with molecular docking studies. Decrease in the KSV value with increasing temperature pointed towards PTB-induced quenching as the static quenching, thus affirming complexation between PTB and HSA. An intermediate binding affinity was found to stabilize the PTB-HSA complex, as suggested by the Ka value. Thermodynamic analysis of the binding phenomenon revealed participation of hydrophobic and van der Waals interactions along with hydrogen bonds, which was also supported by molecular docking analysis. Changes in both secondary and tertiary structures as well as in the microenvironment around Trp and Tyr residues of HSA were anticipated upon PTB binding to the protein, as manifested from circular dichroism and three-dimensional fluorescence spectra, respectively. Binding of PTB to HSA led to protein's thermal stabilization. Competitive ligand displacement experiments using different site markers such as warfarin, indomethacin and ketoprofen disclosed the binding site of PTB as Sudlow's site I in HSA, which was further confirmed by molecular docking analysis.
Interaction behaviour of an anticancer drug, saracatinib (SCB) with human serum albumin (HSA), the major carrier protein in human blood circulation was investigated using fluorescence and absorption spectroscopy as well as computational methods. Analysis of the fluorescence quenching data along with absorption results confirmed the complex formation between SCB and HSA, based on the inverse correlation of the Stern-Volmer constant (KSV) with temperature and hyperchromic effect in the absorption spectra. Moderate binding affinity between SCB and HSA was evident from the binding constant, Ka value (1.08-0.74 × 104 M-1), while the SCB-HSA complexation was anticipated to be stabilized by hydrophobic and van der Waals interactions along with hydrogen bonds, as revealed from the thermodynamic data (ΔS = + 29.40 J mol-1 K-1 and ΔH = - 13.90 kJ mol-1). Addition of SCB to HSA significantly defended the thermal denaturation of the protein, though it perturbed the surrounding medium around Tyr and Trp residues. Site marker displacement results elucidated Sudlow's site I, positioned in subdomain IIA of HSA as the preferred binding site of SCB, which was well supported by molecular docking. Molecular dynamics simulation results suggested the stability of the SCB-HSA complex.Communicated by Ramaswamy H. Sarma.
Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS-HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS-HSA system was predicted from the Stern-Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48 × 104 M-1). Thermodynamic data revealed that the MNS-HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal's interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein's secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein's fluorophores, upon MNS binding. Significant improvement in the protein's thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow's site I) of the protein.Communicated by Ramaswamy H. Sarma.
Pazopanib (PZP) is a multi-targeting tyrosine kinase inhibitor and is currently approved by FDA for the treatment of soft tissue sarcoma and renal cancer. Molecular interaction mechanism of PZP with human serum albumin (HSA) was explored under simulated physiological conditions (pH = 7.4), using fluorescence and UV absorption spectroscopy along with computational methods. Based on the inverse correlation between the Stern-Volmer constant (Ksv) and temperature, it was concluded that PZP quenched the protein fluorescence through static quenching mechanism. This was also confirmed from the UV-vis absorption spectral results. Moderate binding affinity between PZP and HSA was evident from the Ka values (5.51 - 1.05 × 105 M-1) while PZP-HSA complex formation was driven by hydrophobic and van der Waals interactions as well as hydrogen bonds, as revealed by positive entropy change (ΔS = +98.37 J mol-1 K-1) and negative enthalpy change (ΔH = -60.31 kJ mol-1). Three-dimensional fluorescence spectral results disclosed microenvironmental perturbations around Trp and Tyr residues of the protein upon PZP binding. Interestingly, the addition of PZP to HSA significantly protected the protein against thermal stress. Competitive drug displacement results obtained with warfarin, phenylbutazone and diazepam elucidated Sudlow's Site I, positioned in subdomain IIA of HSA, as the preferred binding site of PZP which was well supported by molecular docking analysis, while molecular dynamics simulation results suggested the stability of the PZP-HSA complex.Communicated by Vsevolod Makeev.
The binding mode of antineoplastic antimetabolite, floxuridine (FUDR), with human serum albumin (HSA), the leading carrier in blood circulation, was ascertained using multi-spectroscopic, microscopic, and computational techniques. A static fluorescence quenching was established due to decreased Ksv values with rising temperatures, suggesting FUDR-HSA complexation. UV-vis absorption spectral results also supported this conclusion. The binding constant, Ka values, were found within 9.7-7.9 × 103 M-1 at 290, 300, and 310 K, demonstrating a moderate binding affinity for the FUDR-HSA system. Thermodynamic data (ΔS = +46.35 J.mol-1.K-1 and ΔH = -8.77 kJ.mol-1) predicted the nature of stabilizing forces (hydrogen-bonds, hydrophobic, and van der Waals interactions) for the FUDR-HSA complex. Circular dichroism spectra displayed a minor disruption in the protein's 2° and 3° structures. At the same time, atomic force microscopy images proved variations in the FUDR-HSA surface morphology, confirming its complex formation. The protein's microenvironment around Trp/Tyr residues was also modified, as judged by 3-D fluorescence spectra. FUDR-bound HSA showed better resistance against thermal stress. As disclosed from ligand displacement studies, the FUDR binding site was placed in subdomain IIA (Site I). Further, the molecular docking analysis corroborated the competing displacement studies. Molecular dynamics evaluations revealed that the complex achieved equilibrium during simulations, confirming the FUDR-HSA complex's stability.