Displaying all 4 publications

Abstract:
Sort:
  1. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
  2. Abiri R, Rizan N, Balasundram SK, Shahbazi AB, Abdul-Hamid H
    Heliyon, 2023 Dec;9(12):e22601.
    PMID: 38125472 DOI: 10.1016/j.heliyon.2023.e22601
    Over the decades, agri-food security has become one of the most critical concerns in the world. Sustainable agri-food production technologies have been reliable in mitigating poverty caused by high demands for food. Recently, the applications of agri-food system technologies have been meaningfully changing the worldwide scene due to both external strengths and internal forces. Digital agriculture (DA) is a pioneering technology helping to meet the growing global demand for sustainable food production. Integrating different sub-branches of DA technologies such as artificial intelligence, automation and robotics, sensors, Internet of Things (IoT) and data analytics into agriculture practices to reduce waste, optimize farming inputs and enhance crop production. This can help shift from tedious operations to continuously automated processes, resulting in increasing agricultural production by enabling the traceability of products and processes. The application of DA provides agri-food producers with accurate and real-time observations regarding different features influencing their productivity, such as plant health, soil quality, weather conditions, and pest and disease pressure. Analyzing the results achieved by DA can help agricultural producers and scholars make better decisions to increase yields, improve efficiency, reduce costs, and manage resources. The core focus of the current work is to clarify the benefits of some sub-branches of DA in increasing agricultural production efficiency, discuss the challenges of practical DA in the field, and highlight the future perspectives of DA. This review paper can open new directions to speed up the DA application on the farm and link traditional agriculture with modern farming technologies.
  3. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 Apr 12;8(1):6009.
    PMID: 29651139 DOI: 10.1038/s41598-018-24116-5
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
  4. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 01 17;8(1):896.
    PMID: 29343758 DOI: 10.1038/s41598-017-18825-6
    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links