Displaying all 2 publications

Abstract:
Sort:
  1. Ling KE, Roslan SM, Taib H, Berahim Z
    Cureus, 2023 Sep;15(9):e45394.
    PMID: 37854737 DOI: 10.7759/cureus.45394
    Background In the periodontal regenerative procedure, the membrane used should possess good mechanical stability with suitable resorption time to allow restoration of the lost periodontium. Amniotic membrane (AM) has regenerative potential as a scaffold or barrier membrane due to its various beneficial properties. However, its degradation rate is not clearly reported. Methodology This study aimed to evaluate the resorption capacity of AM and its surface architecture after being subjected to hydrolytic degradation analysis in phosphate buffer solution (PBS). AM was cut into sizes of 10 × 10 mm2 for three replicates. The membranes were weighed before and at different time intervals (days 7, 14, 21, and 28) after immersion in PBS. The degradation rate was determined by the percentage of mean weight loss from the initial weight at different time intervals. The AM surface profile was observed under scanning electron microscopy (SEM) before and after 28 days of immersion. Results The result shows a 92% loss of weight over 28 days with the highest attained in the first seven days (67%), followed by 7%, 17%, and 1% after days 14, 21, and 28, respectively. SEM of the AM surface before the degradation test showed a polygonal shape forming a well-arranged mosaic pattern covered with microvilli. At day 28, the remaining AM appears as porous surface architecture, irregularly arranged fibers, and no microvilli seen. Conclusions This study demonstrated that over four weeks of degradation analysis, AM was not entirely degraded but had lost some of the microstructure. The biodegradability of AM should be further evaluated to elucidate its stability within adequate time parallel with the tissue healing process in periodontal tissue regeneration.
  2. Ahmad AH, Zabri SH, Roslan SM, Ayob NA, Abd Hamid AI, Mohd Taib NH, et al.
    Malays J Med Sci, 2024 Aug;31(4):111-125.
    PMID: 39247106 DOI: 10.21315/mjms2024.31.4.9
    BACKGROUND: The human reward system has been extensively studied using neuroimaging. This bibliometric analysis aimed to determine the global trend in diffusion magnetic resonance imaging (dMRI) and human reward research in terms of the number of documents, the most active countries and their collaborating countries, the top journals and institutions, the most prominent authors and most cited articles, and research hotspots.

    METHODS: The research datasets were acquired from the Scopus database. The search terms used were 'reward' AND 'human' AND 'diffusion imaging' OR 'diffusion tensor imaging' OR 'diffusion MRI' OR 'diffusion-weighted imaging' OR 'tractography' in the abstract, article title and keywords. A total of 336 publications were analysed using Harzing's Publish or Perish and VOSviewer software.

    RESULTS: The results revealed an upward trend in the number of publications with the highest number of articles in 2020 and 2022. Most publications were limited to countries, authors, and institutions in the USA, China and Europe. Bracht, Coenen, Wiest, Federspiel and Feng were among the top authors from Switzerland, Germany and the UK. Neuroimage, Neuroimage Clinical, Frontiers in Human Neuroscience, Human Brain Mapping, and the Journal of Neuroscience were the top journals. Among the top articles, six were reviews and four were original articles, while the top keywords in human reward research were 'diffusion MRI', 'adolescence', 'depression' and 'reward-related brain areas'.

    CONCLUSION: These findings may serve as researchers' references to find collaborative authors, relevant journals, cooperative countries/institutions, and hot topics related to dMRI and reward research.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links