In the asymmetric unit of the title complex, [Ni(C16H14N3OS)2], the nickel ion is tetra-coordinated in a distorted square-planar geometry by two independent mol-ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C=N bonds. The close approach of hydrogen atoms to the Ni(2+) atom suggests anagostic inter-actions (Ni⋯H-C) are present. The crystal structure is built up by a network of two C-H⋯O inter-actions. One of the inter-actions forms inversion dimers and the other links the mol-ecules into infinite chains parallel to [100]. In addition, a weak C-H⋯π inter-action is also present.
In the title compound, [SbBr(C10H7)2], the Sb(III) atom has a distorted trigonal-pyramidal coordination geometry and the planes of the two naphthalene ring systems make a dihedral angle of 80.26 (18)°. An intra-molecular C-H⋯Br hydrogen bond forms an S(5) ring motif. In the crystal, weak C-H⋯Br inter-actions link the mol-ecules into helical chains along the b-axis direction.
The asymmetric unit of the title compound, [Ru3(C19H17P)(C25H22P2)(CO)9], consists of two independent mol-ecules. The bis-(di-phenyl-phosphan-yl)methane ligand bridges an Ru-Ru bond and the benzyl-diphenyl-phosphane ligand binds to the third Ru atom. The Ru-Ru bond cis to the benzyl-diphenyl-phosphane ligand is the longest of the three Ru-Ru bonds in both mol-ecules. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming layers parallel to the ac plane. C-H⋯π contacts further stabilize the crystal packing.
Two field isolates of Rhizoctonia solani were isolated from infected paddy plants in Malaysia. These isolates were verified via ITS-rDNA analysis that yielded ~720 bp products of the ITS1-5.8S-ITS4 region, respectively. The sequenced products showed insertion and substitution incidences which may result in strain diversity and possible variation in disease severity. These strains showed some regional and host-specific relatedness via Maximum Likelihood and further phylogenetic analysis via Maximum Parsimony showed that these strains were closely related to R. solani AG1-1A (with 99-100% identity). Subsequent to strain verification and analysis, these isolates were used in the screening of twenty rice varieties for tolerance or resistance to sheath blight via mycelial plug method where both isolates (1801 and 1802) showed resistance or moderate resistance to Teqing, TETEP, and Jasmine 85. Isolate 1802 was more virulent based on the disease severity index values. This study also showed that the mycelial plug techniques were efficient in providing uniform inoculum and humidity for screening. In addition this study shows that the disease severity index is a better mode of scoring for resistance compared to lesion length. These findings will provide a solid basis for our future breeding and screening activities at the institution.
In the title compound, C19H17N5S, the dihedral angles between the purine ring system (r.m.s. deviation = 0.009 Å) and the S-bound and methyl-ene-bound phenyl rings are 74.67 (8) and 71.28 (7)°, respectively. In the crystal, inversion dimers linked by pairs of N-H⋯N hydrogen bonds generate R 2 (2)(8) loops. C-H⋯N inter-actions link the dimers into (100) sheets.
The asymmetric unit of the title compound, C22H18N4O2S2, contains two mol-ecules. In one of them, the dihedral angles between the central benzene ring and the phenyl rings are 16.97 (8) and 20.97 (8)°, while the phenyl rings make a dihedral angle of 37.87 (8)°. In the other mol-ecule, the corresponding values are 34.92 (7), 53.90 (7) and 60.68 (8)°, respectively. In each mol-ecule, two intra-molecular N-H⋯O hydrogen bonds generate S(6) rings and a short C-H⋯S contact also occurs. In the crystal, N-H⋯S, N-H⋯O, C-H⋯O and C-H⋯S inter-actions link the mol-ecules into a three-dimensional network.
A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.
In the title compound, C28H27FN4O3·H2O, the benzimidazole ring system is essentially planar with a maximum deviation of 0.028 (1) Å. It makes dihedral angles of 47.59 (5) and 60.31 (5)°, respectively, with the pyridine and benzene rings, which make a dihedral angle of 22.58 (6)° with each other. The pyrrolidine ring shows an envelope conformation with one of the methyl-ene C atoms as the flap. In the crystal, the components are connected into a tape along the b-axis direction through O-H⋯O and O-H⋯N hydrogen bonds and a π-π inter-action between the pyridine and benzene rings [centroid-centroid distance of 3.685 (8) Å]. The tapes are further linked into layers parallel to the ab plane by C-H⋯O and C-H⋯F inter-actions.
In the title compound, C24H23N3O2, the benzimidazole ring system makes dihedral angles of 7.28 (5) and 67.17 (5)°, respectively, with the planes of the benzene and phenyl rings, which in turn make a dihedral angle of 69.77 (6)°. In the crystal, mol-ecules are connected by C-H⋯N and C-H⋯O inter-actions, forming a layer parallel to the bc plane. A π-π inter-action, with a centroid-centroid distance of 3.656 (1) Å, is observed in the layer.
The asymmetric unit of the title compound, C29H24FNO5·0.5CH3OH, contains two independent mol-ecules and a one methanol solvent mol-ecule. The methanol mol-ecule is O-H⋯O hydrogen bonded to one of the independent mol-ecules. The pyrrolidine rings in both mol-ecules adopt half-chair conformations, while the cyclo-pentane rings within the indane groups are in flattened envelope conformations, with the spiro C atoms forming the flaps. The benzene rings of the indane ring systems form a dihedral angle of 35.06 (7)° in one independent mol-ecule and 31.16 (8)° in the other. The fluoro-substituted benzene ring forms dihedral angles of 65.35 (6) and 85.87 (7)° with the indane group benzene rings in one mol-ecule, and 72.78 (8) and 77.27 (8)° in the other. In each mol-ecule, a weak intra-molecular C-H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, weak C-H⋯O, C-H⋯N and C-H⋯F hydrogen bonds link the mol-ecules into a three-dimensional network.
In the title compound, C(24)H(25)N(3)O(5), the eth-oxy group is disordered over two orientations in a 0.853 (14):0.147 (14) ratio. The benzimadazole ring system (r.m.s. deviation = 0.016 Å) makes a dihedral angle of 35.47 (7)° with the attached benzene ring. The pyrrolidine ring adopts an envelope conformation with a methyl-ene C atom as the flap. In the crystal, inversion dimers linked by pairs of O-H⋯N hydrogen bonds generate R(2) (2)(16) loops. C-H⋯O inter-actions link the dimers into a three-dimensional network.
A series of complexes of the type LAuCl where L = tris(p-tolylarsane), tris(m-tolylarsane), bis(diphenylarsano)ethane, and tris(naphthyl)arsane have been synthesized. All of the new complexes, 1-4, have been fully characterized by means of ¹H NMR and ¹³C NMR spectroscopy and single crystal X-ray crystallography. The structures of complexes 1-4 have been determined from X-ray diffraction data. The linear molecules have an average bond distance between gold-arsenic and gold-chlorine of 2.3390Å and 2.2846Å, respectively. Aurophilic interaction was prominent in complex 1 and 3, whereas complex 2 and 4 do not show any such interaction. The intermolecular gold interaction bond length was affected by the electronegativity of the molecule. The computed values calculated at DFT level using B3LYP function are in good agreement with the experimental results.
The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).
The title compound (trivial name brasixanthone B), C23H22O5, isolated from Calophyllum gracilentum, is characterized by a xanthone skeleton of three fused six-membered rings plus an additional fused pyrano ring and one 3-methyl-but-2-enyl side chain. The core xanthone moiety is almost planar, with a maximum deviation 0.057 (4) Å from the mean plane. In the mol-ecule, an intra-molecular O-H⋯O hydrogen bond forms an S(6) ring motif. The crystal structure features inter-molecular O-H⋯O and C-H⋯O inter-actions.
A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO2 electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS2 layer grown on the surface of a (001) faceted and single-crystalline TiO2 nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability. These properties allow the perovskite solar cells (PSCs) to produce a PCE as high as 18.73% with short-circuit current density (Jsc), open-circuit voltage (Voc), and fill-factor (FF) values as high as 22.04 mA/cm2, 1.13 V, and 0.752, respectively, a 3.3% improvement from the pristine TiO2-NG-based PSCs. The present approach should find an extensive application for controlling the photoelectrical dynamic deficiency in perovskite solar cells.