Pennywort (Centella asiatica) is a herbaceous vegetable that is usually served in the form of fresh-cut vegetables and consumed raw. Fresh-cut vegetables are in high demand as they offer convenience, have fresh-like quality and are potentially great for therapeutic applications. However, it could be the cause of foodborne outbreaks. Pulsed light is known as a decontamination method for minimally processed products. The aim of this study was to determine the influence of pulsed light in combination with acidic electrolysed water on the sensory, morphological changes and bioactive components in the leaves of pennywort during storage. A combination of soaking with acidic electrolysed water (AEW) at pH 2.5 and pulsed light (PL) treatment (1.5 J/cm2) was tested on the leaves of pennywort. After treatment, these leaves were refrigerated (4 ± 1 °C) for two weeks and evaluated on the basis of sensory acceptance, the visual appearance of the epidermal cell and bioactive compounds. In terms of sensorial properties, samples treated with the combined treatment were preferred over untreated samples. The combination of AEW and PL 1.5 J/cm2 was the most preferred in terms of purchasing and consumption criteria. Observations of the epidermal cells illustrated that PL treatment kept the cell structure intact. The bioactive phytocompounds found in the leaves of pennywort are mainly from the triterpene glycosides (asiaticoside, madecassoside, asiatic acid and madecassic acid) and are efficiently preserved by the combined treatment applied. In conclusion, the combination of acidic electrolysed water and pulsed light treatment is beneficial in retaining the sensory quality and bioactive compounds in the leaves of Pennywort during storage at 4 ± 1 °C.
Fresh pennywort (Centella asiatica) is usually eaten raw as 'ulam' or salad-like lettuce. Unfortunately, the fresh pennywort has the potential to cause foodborne outbreaks due to pathogens present on the surface and between the leaves, as washing the pennywort using tap water alone cannot guarantee that the pathogens are eliminated. Thus, the efficacies of several sanitizing solutions, i.e., sodium chloride, sodium hypochlorite, acetic acid, acidic electrolyzed water (acidic EW), alkaline electrolyzed water (alkaline EW), and a combination of acidic EW and alkaline EW (acidic-alkaline EW), were evaluated for their potential applications as washing solutions for pennywort. Washing using acidic EW alone or in combination with alkaline EW (two-step washing) reduced the microbial count. In sensory evaluation, all sanitizer solutions were accepted by the panellists with a score greater than 5, except those washing with acetic acid. Overall, the use of acidic EW, either alone or in combination with alkaline EW, was the best treatment to decontaminate microbes while maintaining the physicochemical and sensory properties of pennywort leaves.