Displaying all 6 publications

Abstract:
Sort:
  1. Drinkwater R, Williamson J, Clare EL, Chung AYC, Rossiter SJ, Slade E
    PeerJ, 2021;9:e11897.
    PMID: 34447624 DOI: 10.7717/peerj.11897
    Invertebrate-derived DNA (iDNA) sampling in biodiversity surveys is becoming increasingly widespread, with most terrestrial studies relying on DNA derived from the gut contents of blood-feeding invertebrates, such as leeches and mosquitoes. Dung beetles (superfamily Scarabaeoidea) primarily feed on the faecal matter of terrestrial vertebrates and offer several potential benefits over blood-feeding invertebrates as samplers of vertebrate DNA. Importantly, these beetles can be easily captured in large numbers using simple, inexpensive baited traps, are globally distributed, and occur in a wide range of habitats. To build on the few existing studies demonstrating the potential of dung beetles as sources of mammalian DNA, we subjected the large-bodied, Bornean dung beetle (Catharsius renaudpauliani) to a controlled feeding experiment. We analysed DNA from gut contents at different times after feeding using qPCR techniques. Here, we first describe the window of DNA persistence within a dung beetle digestive tract. We found that the ability to successfully amplify cattle DNA decayed over relatively short time periods, with DNA copy number decreasing by two orders of magnitude in just 6 h. In addition, we sampled communities of dung beetles from a lowland tropical rainforest in Sabah, Malaysia, in order to test whether it is possible to identify vertebrate sequences from dung beetle iDNA. We sequenced both the gut contents from large dung beetle species, as well as whole communities of smaller beetles. We successfully identified six mammalian species from our samples, including the bearded pig (Sus barbatus) and the sambar deer (Rusa unicolor)-both vulnerable species on the IUCN red list. Our results represent the first use of dung beetle iDNA to sample Southeast Asian vertebrate fauna, and highlight the potential for dung beetle iDNA to be used in future biodiversity monitoring surveys.
  2. Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, et al.
    Mol Ecol, 2021 11;30(22):5844-5857.
    PMID: 34437745 DOI: 10.1111/mec.16153
    Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
  3. Drinkwater R, Schnell IB, Bohmann K, Bernard H, Veron G, Clare E, et al.
    Mol Ecol Resour, 2019 Jan;19(1):105-117.
    PMID: 30225935 DOI: 10.1111/1755-0998.12943
    The application of high-throughput sequencing (HTS) for metabarcoding of mixed samples offers new opportunities in conservation biology. Recently, the successful detection of prey DNA from the guts of leeches has raised the possibility that these, and other blood-feeding invertebrates, might serve as useful samplers of mammals. Yet little is known about whether sympatric leech species differ in their feeding preferences, and whether this has a bearing on their relative suitability for monitoring local mammalian diversity. To address these questions, we collected spatially matched samples of two congeneric leech species Haemadipsa picta and Haemadipsa sumatrana from lowland rainforest in Borneo. For each species, we pooled ~500 leeches into batches of 10 individuals, performed PCR to target a section of the mammalian 16S rRNA locus and undertook sequencing of amplicon libraries using an Illumina MiSeq. In total, we identified sequences from 14 mammalian genera, spanning nine families and five orders. We found greater numbers of detections, and higher diversity of OTUs, in H. picta compared with H. sumatrana, with rodents only present in the former leech species. However, comparison of samples from across the landscape revealed no significant difference in mammal community composition between the leech species. We therefore suggest that H. picta is the more suitable iDNA sampler in this degraded Bornean forest. We conclude that the choice of invertebrate sampler can influence the detectability of different mammal groups and that this should be accounted for when designing iDNA studies.
  4. Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, et al.
    Mol Ecol, 2021 07;30(13):3299-3312.
    PMID: 33171014 DOI: 10.1111/mec.15724
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
  5. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2014 Dec;4(24):4701-35.
    PMID: 25558364 DOI: 10.1002/ece3.1303
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  6. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2017 Jan;7(1):145-188.
    PMID: 28070282 DOI: 10.1002/ece3.2579
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links