Displaying all 3 publications

Abstract:
Sort:
  1. Mahat MM, Sabere ASM, Azizi J, Amdan NAN
    Emergent Mater, 2021;4(1):279-292.
    PMID: 33649739 DOI: 10.1007/s42247-021-00188-4
    The COVID-19 pandemic is a motivation for material scientists to search for functional materials with valuable properties to alleviate the risks associated with the coronavirus. The formulation of functional materials requires synergistic understanding on the properties of materials and mechanisms of virus transmission and disease progression, including secondary bacterial infections that are prevalent in COVID-19 patients. A viable candidate in the struggle against the pandemic is antimicrobial polymer, due to their favorable properties of flexibility, lightweight, and ease of synthesis. Polymers are the base material for personal protective equipment (PPE), such as gloves, face mask, face shield, and coverall suit for frontliners. Conducting polymers (CPs) are polymers with electrical properties due to the addition of dopant in the polymer structure. The conductivity of polymers augments their antiviral and antibacterial properties. This review discusses the types of CPs and how their properties could be exploited to ward off bacterial infections in hospital settings, specifically in cases involving COVID-19 patients. This review also covers common CPs fabrication techniques. The key components to produce CPs at several possibilities to fit the current needs in fighting secondary bacterial infections are also discussed.
  2. Sabere ASM, Suhaimi NANM, Ahmed QU, Mahat MM, Roslan NC, Azizi J
    J Pharm Bioallied Sci, 2021 11 24;13(3):312-316.
    PMID: 35017887 DOI: 10.4103/jpbs.JPBS_783_20
    Background: Oral drug delivery is the most preferred route for drug administration in the world, with tablets being one of the most common dosage forms. However, some people, particularly children and the elderly, have difficulty swallowing the tablets. Chewable tablets are the dosage form that can address the issue while also providing a valuable masking effect on drug taste, allowing patients to swallow the drugs more easily.

    Materials and Methods: In this study, the chewable tablets were manufactured using the melt granulation method, which resulted in tablets with a chewy texture. The tablets contained paracetamol as well as Arabic gum, starch, agar, and mannitol.

    Results: The drug release profiles for the fragmented form showed that 50% of the drug was released within 4 min and 100% was released within 30 min of the dissolution process. The intact form released nearly 90% of the drug within 2 h.

    Conclusion: Formulation 2 was determined as the best formulation. This tablets' formulation had passed all characterization tests and displayed a moderate hardness and chewy texture.

  3. Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, et al.
    Molecules, 2020 Nov 24;25(23).
    PMID: 33255206 DOI: 10.3390/molecules25235491
    In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links