Displaying all 5 publications

Abstract:
Sort:
  1. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Sengupta P, Dutta S, et al.
    Andrologia, 2019 Feb;51(1):e13159.
    PMID: 30298637 DOI: 10.1111/and.13159
    Kelch-like ECH-associated protein 1 (keap1)-nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway is one of the master regulators of cellular defence against oxidative stress. Epigenetic alterations like hypermethylation of keap1 gene impair keap1-Nrf2 system in several oxidative stress-associated diseases. The objective of this study was to evaluate the epigenetic status of keap1 in sperm DNA of normozoospermic subjects, having different levels of reactive oxygen species (ROS) in seminal plasma. Semen samples were obtained from 151 apparently healthy male partners of couples who attended the Avicenna infertility clinic. Samples were categorised into four groups according to their ROS levels: group A (n = 39, ROS 
  2. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al.
    Reprod Biol Endocrinol, 2018 Sep 11;16(1):87.
    PMID: 30205828 DOI: 10.1186/s12958-018-0406-2
    Reports of the increasing incidence of male infertility paired with decreasing semen quality have triggered studies on the effects of lifestyle and environmental factors on the male reproductive potential. There are numerous exogenous and endogenous factors that are able to induce excessive production of reactive oxygen species (ROS) beyond that of cellular antioxidant capacity, thus causing oxidative stress. In turn, oxidative stress negatively affects male reproductive functions and may induce infertility either directly or indirectly by affecting the hypothalamus-pituitary-gonadal (HPG) axis and/or disrupting its crosstalk with other hormonal axes. This review discusses the important exogenous and endogenous factors leading to the generation of ROS in different parts of the male reproductive tract. It also highlights the negative impact of oxidative stress on the regulation and cross-talk between the reproductive hormones. It further describes the mechanism of ROS-induced derangement of male reproductive hormonal profiles that could ultimately lead to male infertility. An understanding of the disruptive effects of ROS on male reproductive hormones would encourage further investigations directed towards the prevention of ROS-mediated hormonal imbalances, which in turn could help in the management of male infertility.
  3. Darbandi S, Darbandi M, Khorram Khorshid HR, Sadeghi MR, Agarwal A, Sengupta P, et al.
    Reprod Biol Endocrinol, 2017 Oct 02;15(1):77.
    PMID: 28969648 DOI: 10.1186/s12958-017-0292-z
    BACKGROUND: Ooplasmic transfer (OT) technique or cytoplasmic transfer is an emerging technique with relative success, having a significant status in assisted reproduction. This technique had effectively paved the way to about 30 healthy births worldwide. Though OT has long been invented, proper evaluation of the efficacy and risks associated with this critical technique has not been explored properly until today. This review thereby put emphasis upon the applications, efficacy and adverse effects of OT techniques in human.

    MAIN BODY: Available reports published between January 1982 and August 2017 has been reviewed and the impact of OT on assisted reproduction was evaluated. The results consisted of an update on the efficacy and concerns of OT, the debate on mitochondrial heteroplasmy, apoptosis, and risk of genetic and epigenetic alteration.

    SHORT CONCLUSION: The application of OT technique in humans demands more clarity and further development of this technique may successfully prove its utility as an effective treatment for oocyte incompetence.

  4. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, et al.
    J Assist Reprod Genet, 2019 Feb;36(2):241-253.
    PMID: 30382470 DOI: 10.1007/s10815-018-1350-y
    PURPOSE: This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction.

    METHODS: Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS 

  5. Darbandi S, Darbandi M, Agarwal A, Khorshid HRK, Sadeghi MR, Esteves SC, et al.
    Int J Reprod Biomed, 2020 Jun;18(6):425-438.
    PMID: 32754678 DOI: 10.18502/ijrm.v13i6.7284
    Background: The three-parent assisted reproductive technique may increase oocyte competence.

    Objective: In this case-control study, the suitability of germinal vesicle transfer (GVT), synchronous ooplasmic transfer (sOT), asynchronous ooplasmic transfer using cryopreserved MII oocyte (caOT), and asynchronous ooplasmic transfer using waste MII oocyte (waOT) for maturation of the human-aged non-surrounded nucleolus germinal vesicle-stage (NSN-GV) oocyte were investigated.

    Materials and Methods: NSN-GV oocytes were subjected to four methods: group A (GVT), B (sOT), C (caOT) D (waOT), and E (Control). The fusion rates, MI, MII, ICSI observations and cleavage at 2-cell, 4-cell, and 8-cell stages were compared in the groups.

    Results: In GVT, none of the oocytes fused. In sOT, all oocytes fused, 20 achieved the MI, 14 progressed to MII, 8 fertilized, 6 cleaved and 5, 4, and 3 achieved the 2-cells, 4-cells and 8-cells, respectively. In caOT, all oocytes fused and achieved the MI, 8 progressed to MII and fertilized, 6 cleaved and 6, 5, and 5 achieved the 2-cells, 4-cells, and 8-cells respectively. In waOT, all oocytes fused, 5 and 3 progressed to MI and MII, respectively, but only one fertilized, cleaved and reached a 4-cells stage. In group E, 6 and 2 oocytes progressed to MI and MII, respectively, and only one fertilized but arrested at the zygote stage. caOT had the highest survival rate when compared to sOT (p = 0.04), waOT (p = 0.002), and control (p = 0.001).

    Conclusion: The caOT method was beneficial over sOT, waOT, and GVT in supplementing the developmental capacity of human-aged NSN-GV oocytes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links