Ash produced from a hospital waste incinerator was treated using a high temperature melting process at 1200 degrees C. The quality of the produced slag was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), leaching tests and sequential chemical extraction of metals. The slag contained large amounts of SiO(2,) CaO, Al(2)O(3), Sn, Ni, Cu, Ba and B. XRD analysis revealed a moderate crystal structure for the melted slag and identified the main crystals as quartz (SiO(2)), kaolinite (Al(2)Si(2)O(5)(OH)(4)), albite (NaAlSi(3)O(8)) and gibbsite (Al(OH)(3)). The observed crystal structure assists in preventing the leaching of heavy metals from the slag. Furthermore, the leaching results found the produced slag to comply with disposal limits set by the US EPA. Results from sequential chemical extraction analysis showed that metals in the slag exhibited the strongest preference to be bound to the residual fraction (stable fraction), which is known to have very low leaching characteristics. Melting was found to stabilize heavy metals in hospital waste successfully and therefore it can be an acceptable method for disposal.
Sewage sludge from aerobic treatment plant was found to contain high amounts of heavy metals. Research was carried out to investigate the speciation and leaching behavior of heavy metals when using high temperature melting technology for treatment. This was achieved by conducting a sequential chemical extraction procedure and EP-TOX leaching test. The thermal treatment led to increased shift of metals from organic fraction to residual fraction, indicating that the thermal treatment caused metals in sewage sludge to become stable. Furthermore, results from leaching test revealed that metals were not leached from the final product after thermal treatment and this was verified using US EPA standard limits. Results from this study indicated that melting technology could convert the sludge to product that can be either reused or landfilled without an adverse environmental impact.
An evaluation of two commonly used coagulants, alum and ferric chloride was conducted to treat retention pond water using microfiltration. To determine the effectiveness of these coagulants in removing turbidity, color, and total suspended solids two different sets of the experiments were performed. Preliminary test was carried out to evaluate the optimum dosages of coagulants. Optimum turbidity removal was achieved with a 4 and 20 mg/L dosage for ferric chloride and alum, respectively. Generally, coupling microfiltration with coagulation using both alum and ferric chloride exhibited excellent effectiveness for turbidity, color, and total suspended solids removal. The efficiency for alum and ferric chloride for turbidity removal were 96 and 98%, respectively, which was greater than 89% removal using microfiltration alone. Furthermore, microfiltration only demonstrated 81 and 83% removal efficiency for color and total suspended solids removal, respectively. However, microfiltration-coagulation using alum and ferric chloride resulted about 83 and 93% color removal, and 92 and 94% total suspended solids removal, respectively.