Displaying all 6 publications

Abstract:
Sort:
  1. Saeidi T, Al-Gburi AJA, Karamzadeh S
    Sensors (Basel), 2023 Feb 10;23(4).
    PMID: 36850599 DOI: 10.3390/s23041997
    A detachable miniaturized three-element spirals radiator button antenna integrated with a compact leaky-wave wearable antenna forming a dual-band three-port antenna is proposed. The leaky-wave antenna is fabricated on a denim (εr = 1.6, tan δ = 0.006) textile substrate with dimensions of 0.37 λ0 × 0.25 λ0 × 0.01 λ0 mm3 and a detachable rigid button of 20 mm diameter (on a PTFE substrate εr = 2.01, tan δ = 0.001). It augments users' comfort, making it one of the smallest to date in the literature. The designed antenna, with 3.25 to 3.65 GHz and 5.4 to 5.85 GHz operational bands, covers the wireless local area network (WLAN) frequency (5.1-5.5 GHz), the fifth-generation (5G) communication band. Low mutual coupling between the ports and the button antenna elements ensures high diversity performance. The performance of the specific absorption rate (SAR) and the envelope correlation coefficient (ECC) are also examined. The simulation and measurement findings agree well. Low SAR,
  2. Ali SM, Sovuthy C, Noghanian S, Ali Z, Abbasi QH, Imran MA, et al.
    Micromachines (Basel), 2021 Apr 22;12(5).
    PMID: 33922053 DOI: 10.3390/mi12050475
    The human body is an extremely challenging environment for wearable antennas due to the complex antenna-body coupling effects. In this article, a compact flexible dual-band planar meander line monopole antenna (MMA) with a truncated ground plane made of multiple layers of standard off-the-shelf materials is evaluated to validate its performance when worn by different subjects to help the designers who are shaping future complex on-/off-body wireless devices. The antenna was fabricated, and the measured results agreed well with those from the simulations. As a reference, in free-space, the antenna provided omnidirectional radiation patterns (ORP), with a wide impedance bandwidth of 1282.4 (450.5) MHz with a maximum gain of 3.03 dBi (4.85 dBi) in the lower (upper) bands. The impedance bandwidth could reach up to 688.9 MHz (500.9 MHz) and 1261.7 MHz (524.2 MHz) with the gain of 3.80 dBi (4.67 dBi) and 3.00 dBi (4.55 dBi), respectively, on the human chest and arm. The stability in results shows that this flexible antenna is sufficiently robust against the variations introduced by the human body. A maximum measured shift of 0.5 and 100 MHz in the wide impedance matching and resonance frequency was observed in both bands, respectively, while an optimal gap between the antenna and human body was maintained. This stability of the working frequency provides robustness against various conditions including bending, movement, and relatively large fabrication tolerances.
  3. Mahmood SN, Ishak AJ, Saeidi T, Soh AC, Jalal A, Imran MA, et al.
    Micromachines (Basel), 2021 Mar 19;12(3).
    PMID: 33808523 DOI: 10.3390/mi12030322
    Wireless body area network (WBAN) applications have broad utility in monitoring patient health and transmitting the data wirelessly. WBAN can greatly benefit from wearable antennas. Wearable antennas provide comfort and continuity of the monitoring of the patient. Therefore, they must be comfortable, flexible, and operate without excessive degradation near the body. Most wearable antennas use a truncated ground, which increases specific absorption rate (SAR) undesirably. A full ground ultra-wideband (UWB) antenna is proposed and utilized here to attain a broad bandwidth while keeping SAR in the acceptable range based on both 1 g and 10 g standards. It is designed on a denim substrate with a dielectric constant of 1.4 and thickness of 0.7 mm alongside the ShieldIt conductive textile. The antenna is fed using a ground coplanar waveguide (GCPW) through a substrate-integrated waveguide (SIW) transition. This transition creates a perfect match while reducing SAR. In addition, the proposed antenna has a bandwidth (BW) of 7-28 GHz, maximum directive gain of 10.5 dBi and maximum radiation efficiency of 96%, with small dimensions of 60 × 50 × 0.7 mm3. The good antenna's performance while it is placed on the breast shows that it is a good candidate for both breast cancer imaging and WBAN.
  4. Saeidi T, Saleh S, Mahmood SN, Timmons N, Al-Gburi AJA, Karamzadeh S, et al.
    Heliyon, 2024 Jun 30;10(12):e33024.
    PMID: 38994104 DOI: 10.1016/j.heliyon.2024.e33024
    A miniaturized, multi-band, four-port wearable Multiple Input Multiple Output (MIMO) antenna is proposed, which contains a leaky wave textile antenna (LWTA) on denim (εr = 1.6, tanδ = 0.006) as substrate and Shieldit Super Fabric as conductor textile. The concept in this work involves incorporating the metal and plastic zipper into the garment to function as an antenna worn on the body. Simulations and measurements have been conducted to explore this idea. The LWTA has dimensions of 40 × 30 × 1 mm³. Every two ports are separated by a zipper with two different kinds of materials: Acetal Polymer Plastic (APP) and 90 % brass to improve the isolation, gain, and Impedance bandwidth. The antenna operates in the frequency ranges covering the L, C, S, and X bands. Additionally, diversity performance is evaluated using the Envelope Correlation Coefficient (ECC) and diversity gain (DG). Simulation and measurement findings agree well, with a maximum gain of 12.15 dBi, low Specific Absorption Rate (SAR) based on the standards, DG greater than 9.65 dB, circular polarization (CP), and strong isolation (
  5. Alhawari ARH, Majeed SF, Saeidi T, Mumtaz S, Alghamdi H, Hindi AT, et al.
    Micromachines (Basel), 2021 Apr 07;12(4).
    PMID: 33917167 DOI: 10.3390/mi12040411
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications.
  6. Alhawari ARH, Saeidi T, Almawgani AHM, Hindi AT, Alghamdi H, Alsuwian T, et al.
    Micromachines (Basel), 2021 Dec 14;12(12).
    PMID: 34945409 DOI: 10.3390/mi12121559
    A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8-31 GHz) and vertically polarized (7.6-37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7-3.85 GHz and 5-40 GHz are achieved. Low mutual coupling of less than -22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with εr = 1.4 and h = 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna's characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links