Displaying all 5 publications

Abstract:
Sort:
  1. Safari MJ, Wong JH, Ng KH, Jong WL, Cutajar DL, Rosenfeld AB
    Med Phys, 2015 May;42(5):2550-8.
    PMID: 25979047 DOI: 10.1118/1.4918576
    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures.
  2. Safari MJ, Wong JHD, Jong WL, Thorpe N, Cutajar D, Rosenfeld A, et al.
    Phys Med, 2017 Mar;35:66-72.
    PMID: 28256398 DOI: 10.1016/j.ejmp.2017.02.002
    PURPOSE: The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures.

    METHODS: We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors.

    RESULTS: DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region.

    CONCLUSION: Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures.

  3. Entezam A, Khandaker MU, Amin YM, Ung NM, Bradley DA, Maah J, et al.
    PLoS One, 2016;11(5):e0153913.
    PMID: 27149115 DOI: 10.1371/journal.pone.0153913
    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.
  4. Safari MJ, Wong JH, Kadir KA, Thorpe NK, Cutajar DL, Petasecca M, et al.
    Eur Radiol, 2016 Jan;26(1):79-86.
    PMID: 26002131 DOI: 10.1007/s00330-015-3818-9
    OBJECTIVES: To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures.

    METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures.

    RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions.

    CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose.

    KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.

  5. Givehchi S, Safari MJ, Tan SK, Md Shah MNB, Sani FBM, Azman RR, et al.
    Phys Med, 2018 Jan;45:198-204.
    PMID: 29373248 DOI: 10.1016/j.ejmp.2017.09.137
    PURPOSE: Accurate determination of the bifurcation angle and correlation with plaque buildup may lead to the prediction of coronary artery disease (CAD). This work evaluates two techniques to measure bifurcation angles in 3D space using coronary computed tomography angiography (CCTA).

    MATERIALS AND METHODS: Nine phantoms were fabricated with different bifurcation angles ranging from 55.3° to 134.5°. General X-ray and CCTA were employed to acquire 2D and 3D images of the bifurcation phantoms, respectively. Multiplanar reformation (MPR) and volume rendering technique (VRT) were used to measure the bifurcation angle between the left anterior descending (LAD) and left circumflex arteries (LCx). The measured angles were compared with the true values to determine the accuracy of each measurement technique. Inter-observer variability was evaluated. The two techniques were further applied on 50 clinical CCTA cases to verify its clinical value.

    RESULTS: In the phantom setting, the mean absolute differences calculated between the true and measured angles by MPR and VRT were 2.4°±2.2° and 3.8°±2.9°, respectively. Strong correlation was found between the true and measured bifurcation angles. Furthermore, no significant differences were found between the bifurcation angles measured using either technique. In clinical settings, large difference of 12.0°±10.6° was found between the two techniques.

    CONCLUSION: In the phantom setting, both techniques demonstrated a significant correlation to the true bifurcation angle. Despite the lack of agreement of the two techniques in the clinical context, our findings in phantoms suggest that MPR should be preferred to VRT for the measurement of coronary bifurcation angle by CCTA.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links