Displaying all 7 publications

Abstract:
Sort:
  1. Saifur RG, Dieng H, Hassan AA, Satho T, Miake F, Boots M, et al.
    J Am Mosq Control Assoc, 2010 Dec;26(4):373-80.
    PMID: 21290932
    Moisture plays a major role in the dynamics of mosquito populations, especially those breeding in container habitats. Despite this importance, the role of moisture conditions as they affect oviposition and egg development in Aedes vectors remains largely unexplored. We investigated the effect of exposing gravid female Aedes albopictus mosquitoes and their eggs to different moisture levels (MLs) for various periods on oviposition and hatching. Overall, high-moisture substrates (HMSs; 66% and 72%) provided better environments for egg laying. The timing of initial egg laying was far longer at the lowest substrate moisture level (LSML, 25% and 41.2%) than at HMSs. The numbers of eggs laid were much lower in the drier environments. At LSMLs, gravid females retained increasing numbers of mature eggs until death, and egg retention decreased gradually with increasing ML. The HMSs also provided better environments for larval eclosion. The numbers of eggs hatched were lower at the LSML than the HSML environment. No egg hatching occurred after 1 h exposure to moisture. However, egg hatching occurred by installment, with spontaneous hatching (SH) increasing gradually with increasing ML. High-moisture conditions combined with long exposure (30 h and 48 h) favored SH. These results suggest that Ae. albopictus females can respond to better moisture conditions for increased success of embryonation and larval eclosion. This information may be useful in the colonization of floodwater Aedes species.
  2. Saifur RG, Hassan AA, Dieng H, Salmah MR, Saad AR, Satho T
    J Am Mosq Control Assoc, 2013 Mar;29(1):33-43.
    PMID: 23687853
    We studied the diversity of Aedes breeding sites in various urban, suburban, and rural areas over time between February 2009 and February 2010 in the dengue endemic areas of Penang Island, Malaysia. We categorized the breeding sites and efficiency, and identified the key breeding containers. Among the 3 areas, the rural areas produced the highest container index (55), followed by suburban (42) and urban (32) areas. The numbers of key premises and containers were significantly higher (P < 0.000) in rural areas. The class 1 containers were identified as the key containers with higher productivity and efficiency, although class 2 and class 4 are the highest in numbers. Aedes aegypti immatures were found mostly in drums, water reservoirs, and polyethylene sheets, while mixed breeding was more common in buckets and empty paint cans in urban and suburban areas. Aedes albopictus was found mainly in miscellaneous containers such as drums, empty paint cans, and covers in all areas. The main potential containers indoors were drums, water reservoirs, and empty paint cans, and containers outdoors included empty paint cans, drums, and polyethylene sheets.
  3. Saifur RG, Dieng H, Hassan AA, Salmah MR, Satho T, Miake F, et al.
    PLoS One, 2012;7(2):e30919.
    PMID: 22363516 DOI: 10.1371/journal.pone.0030919
    BACKGROUND: The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior.

    METHODOLOGY/PRINCIPAL FINDINGS: This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts.

    CONCLUSION/SIGNIFICANCE: The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.

  4. Dieng H, Saifur RG, Hassan AA, Salmah MR, Boots M, Satho T, et al.
    PLoS One, 2010;5(7):e11790.
    PMID: 20668543 DOI: 10.1371/journal.pone.0011790
    The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities.
  5. Saifur RG, Hassan AA, Dieng H, Ahmad H, Salmah MR, Satho T, et al.
    J Am Mosq Control Assoc, 2012 Jun;28(2):84-92.
    PMID: 22894118
    It is important to obtain frequent measurements of the abundance, distribution, and seasonality of mosquito vectors to determine the risk of disease transmission. The number of cases of dengue infection has increased in recent years on Penang Island, Malaysia, with recurring epidemics. However, ongoing control attempts are being critically hampered by the lack of up-to-date information regarding the vectors. To overcome this problem, we examined the current situation and distribution of dengue vectors on the island. Residences throughout the urban, suburban, and rural areas were inspected through wet and dry seasons between February 2009 and February 2010. Two vectors were encountered in the survey, with Aedes aegypti present in especially high numbers mostly in urban areas. Similar observations were noted for Ae. albopictus in rural areas. The former species was more abundant in outdoor containers, while the latter showed almost equivalent abundance both outdoors and indoors. The dengue virus was active in both urban and rural areas, and the number of cases of infection was higher in areas where Ae. aegypti was predominant. The abundance of immature Ae. albopictus was positively correlated with rainfall (r2 = 0.461; P < 0.05), but this was not the case for Ae. aegypti. For both species, the size of immature populations tended to increase with increasing intensity of rain, but heavy rains resulted in population loss. In addition to updating data regarding the larval habitats and locations (outdoors and indoors), this study highlighted the importance of spatial vector control stratification, which has the potential to reduce costs in control programs.
  6. Dieng H, Saifur RG, Ahmad AH, Salmah MR, Aziz AT, Satho T, et al.
    Asian Pac J Trop Biomed, 2012 Mar;2(3):228-32.
    PMID: 23569903 DOI: 10.1016/S2221-1691(12)60047-1
    To identify the unusual breeding sites of two dengue vectors, i.e. Aedes albopictus (Ae. albopictus) and Aedes aegypti (Ae. aegypti).
  7. Dieng H, Saifur RG, Ahmad AH, Rawi CS, Boots M, Satho T, et al.
    J Am Mosq Control Assoc, 2011 Sep;27(3):263-71.
    PMID: 22017091
    Discarded cigarette butts (DCB) waste occurs worldwide, pollutes landscapes, is unsightly, and results in added debris removal costs. There is, therefore, a great deal of current interest in making use of DCBs in beneficial ways. Despite evidence that DCBs are harmful to water fleas (Daphnia magna), which breed in aquatic environments as do mosquito larvae, their impact on dengue vectors is unknown. We examined whether Aedes albopictus alters its ovipositional responses, larval eclosion, and development in response to presence of DCBs in its habitats. We found oviposition activity in DCB-treated water similar to that of control water and that ovipositional activity in DCB solutions steadily increased over time as those solutions aged to 10 days. Larval eclosion was initially suppressed on day 1 in DCB solution, but increased thereafter to levels similar to control larval eclosion rates. The DCB-water solutions produced significantly higher mortality in both 1st and 2nd instars over control larvae for several days after initial exposure. Mortality rates decreased sharply 3 to 5 days postexposure as DCBs continued to decompose. We found increased survival rates during late development, but daily input of fresh DCBs prevented most young larvae from completing development. Taken together, these observations suggest that decomposing did not deter gravid Ae. albopictus females from ovipositing in treated containers and that DCB solutions had larvicidal effects on early instars. Our results are discussed in the context of DCB use to control container-breeding Ae. albopictus, a competent dengue vector in Asia and other parts of the world.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links