This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.
A microbial electrolysis cell (MEC) fully catalysed by microorganisms is an attractive technology because it incorporates the state-of-the-art concept of converting organic waste to hydrogen with less external energy input than conventional electrolysers. In this work, the impact of the anode feed mode on the production of hydrogen by the biocathode was studied. In the first part, three feed modes and MEC performance in terms of hydrogen production were evaluated. The results showed the highest hydrogen production under the continuous mode (14.6 ± 0.4), followed by the fed-batch (12.7 ± 0.4) and batch (0 L m-2 cathode day-1) modes. On one hand, the continuous mode only increased by 15% even though the hydraulic retention time (HRT) (2.78 h) was lower than the fed-batch mode (HRT 5 h). A total replacement (fed-batch) rather than a constant mix of existing anolyte and fresh medium (continuous) was preferable. On the other hand, no hydrogen was produced in batch mode due to the extensive HRT (24 h) and bioanode starvation. In the second part, the fed-batch mode was further evaluated using a chronoamperometry method under a range of applied cell voltages of 0.3-1.6 V. Based on the potential evolution at the electrodes, three main regions were identified depending on the applied cell voltages: the cathode activation (<0.8 V), transition (0.8-1.1 V), and anode limitation (>1.1 V) regions. The maximum hydrogen production recorded was 12.1 ± 2.1 L m-2 cathode day-1 at 1.0 V applied voltage when the oxidation and reduction reactions at the anode and cathode were optimal (2.38 ± 0.61 A m-2). Microbial community analysis of the biocathode revealed that Alpha-, and Deltaproteobacteria were dominant in the samples with >70% abundance. At the genus level, Desulfovibrio sp. was the most abundant in the samples, showing that these microbes may be responsible for hydrogen evolution.