OBJECTIVE: The objective of this study is to evaluate the anti-cancer potential of the novel class of quinazoline tethered acetamide derivatives against six different cancer cell lines.
METHOD: A novel series of various substituted quinazolinone acetamides were synthesized through a feasible scheme. The synthetic scheme involves the conversion of benzoxazinone (from anthranilic acid and benzoyl chloride) intermediate to 3-amino quinazoline-4-one which is further converted to the final amide by tethering with the propionyl chloride employing Schotten-Baumann Reaction conditions. All the synthesized derivatives characterized by IR, 1HNMR and MASS spectral methods and anti-cancer activity evaluated by employing MTT assay for six cancer cell lines and one normal human cell line.
RESULTS: All the synthesized compounds were screened for anti-cancer activity against six cancer cell lines, including A 549 (lung), DU 145 (prostate), HT 29 (colon), MCF-7 (breast), SiHA (cervical), B16F10 (mouse skin melanoma) and one normal human fibroblast cell lines. All the compounds displayed a decent cytotoxicity profile when compared with the standard drug, doxorubicin. Among the synthesized compounds (5a to 5n) tested, two compounds, 5f and 5g have demonstrated excellent cytotoxicity against SiHA and MCF-7 cancer cell lines.
CONCLUSION: Comparatively, most of the compounds displayed decent cytotoxicity potential relative to the standard drug, doxorubicin. Further investigations are needed to establish the detailed mechanism of action of the developed novel quinazolinone acetamides.
METHODS: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm.
RESULTS: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70%), standard (47.86%), and (39.72%) were found.
CONCLUSION: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory therapeutic effects. ADMET analysis ensures the therapeutic effects and their safety.