Displaying all 4 publications

Abstract:
Sort:
  1. Salin N, Ishak AK, Abdul Rahman S, Ali M, Nawawi HM, Said MS, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:67-8.
    PMID: 19024987
    Bone formation is an active process whereby osteoblasts are found on the surface of the newly formed bone. Adhesion to extracellular matrix is essential for the development of bone however not all surfaces are suitable for osteoblast adhesion and don't support osteoblastic functions. The objective of this study was to test the suitability of a collagen based microcarrier which would support osteoblastic functions.
  2. Md Saad WM, Mohd Noor NA, Mohamad Salin NS, Mohd Z, Eshak Z, Abdul Razak HR
    Med J Malaysia, 2024 Mar;79(Suppl 1):8-13.
    PMID: 38555879
    INTRODUCTION: Bismuth oxide (Bi2O3) particles gained attention in preclinical research especially in medical imaging. Bismuth oxide with its long circulation time is an alternative to the current iodine contrast media which directly possesses high X-ray attenuation coefficient. Exploration of bismuth compound is hampered owing to challenges in synthesizing control for in vivo stability.

    MATERIALS AND METHODS: This study aimed are to characterize Bi2O3 particles synthesized at 60, 90 and 120 °C via hydrothermal method and investigated cytotoxicity of cell viability assay, cell morphology analysis, intracellular reactive oxygen species (ROS) assay and expression of ER stress genes by real-time PCR.

    RESULTS: Results indicated that the size of rod-shaped Bi2O3 particles increased with rising synthesizing temperatures. The cytotoxicity of Bi2O3 particles in Chang liver cells was size-dependent. Bigger-sized Bi2O3 particles resulted in lesser toxicity effects. mRNA expressions of GRP78 and C/EBP homologous protein (CHOP) were down-regulated in all treated Chang liver cells due to the increasing size of Bi2O3 particles. Bi2O3 particles synthesized at 120 °C was found to be less toxic than iodine.

    CONCLUSION: Data suggested that the response of Chang liver cells to Bi2O3 particle cytotoxicity has a significant relationship with its reaction temperatures. This outcome is important in hazard assessment of Bi2O3 particles as a new contrast media and provides better understanding in synthesizing control to enhance its biocompatibility.

  3. Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, et al.
    Results Chem, 2021 Jan;3:100195.
    PMID: 34567959 DOI: 10.1016/j.rechem.2021.100195
    This present study reports some natural products and one hydroxamic acid synthetic compound which were previously reported as matrix metalloproteinase-9 (MMP-9) inhibitors to be evaluated for their inhibition toward severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro). This enzyme is one of the proteins responsible for this coronaviral replication. Two herbal methanolic extracts i.e., Averrhoa carambola leaves and Ageratum conyzoides aerial part demonstrate >50% inhibition at 1000 µg/mL. Interestingly, apigenin, one of flavonoids, demonstrates 92% inhibition at 250 µg/mL (925 µM) as well as hydroxamic acid compound, N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid (NNGH), which shows 69% inhibition at 100 µM. The in vitro results are supported by the docking studies revealing that the binding mode of both compounds is mainly by interacting with GLU166 residue in the hydrophobic pocket of the 3CLpro. Pharmacophore mapping further supported the results by confirming that the in vitro activities of both compounds are due to their pharmacophore features employing hydrogen bond acceptor (HBA), hydrogen bond donor (HBD) and hydrophobic. Gas Chromatography-Mass Spectrometry (GC-MS) analysis reported chromene compounds in Ageratum conyzoides aerial part methanolic extract are potential to be this enzyme inhibitor candidate. These all results reflect their potencies to be SARS-CoV-2 inhibitors through 3CLpro inhibition mechanism.
  4. Hariono M, Rollando R, Karamoy J, Hariyono P, Atmono M, Djohan M, et al.
    Molecules, 2020 Oct 14;25(20).
    PMID: 33066411 DOI: 10.3390/molecules25204691
    Matrix metalloproteinase9 (MMP9) is known to be highly expressed during metastatic cancer where most known potential inhibitors failed in the clinical trials. This study aims to select local plants in our state, as anti-breast cancer agent with hemopexin-like domain of MMP9 (PEX9) as the selective protein target. In silico screening for PEX9 inhibitors was performed from our in house-natural compound database to identify the plants. The selected plants were extracted using methanol and then a step-by-step in vitro screening against MMP9 was performed from its crude extract, partitions until fractions using FRET-based assay. The partitions were obtained by performing liquid-liquid extraction on the methanol extract using n-hexane, ethylacetate, n-butanol, and water representing nonpolar to polar solvents. The fractions were made from the selected partition, which demonstrated the best inhibition percentage toward MMP9, using column chromatography. Of the 200 compounds screened, 20 compounds that scored the binding affinity -11.2 to -8.1 kcal/mol toward PEX9 were selected as top hits. The binding of these hits were thoroughly investigated and linked to the plants which they were reported to be isolated from. Six of the eight crude extracts demonstrated inhibition toward MMP9 with the IC50 24 to 823 µg/mL. The partitions (1 mg/mL) of Ageratum conyzoides aerial parts and Ixora coccinea leaves showed inhibition 94% and 96%, whereas their fractions showed IC50 43 and 116 µg/mL, respectively toward MMP9. Using MTT assay, the crude extract of Ageratum exhibited IC50 22 and 229 µg/mL against 4T1 and T47D cell proliferations, respectively with a high safety index concluding its potential anti-breast cancer from herbal.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links