Displaying all 4 publications

Abstract:
Sort:
  1. Ahmad I, Raji YE, Hassan L, Samaila A, Aliyu B, Zinsstag J, et al.
    Heliyon, 2023 Jun;9(6):e17215.
    PMID: 37383186 DOI: 10.1016/j.heliyon.2023.e17215
    Animal tuberculosis (TB) is a contagious and chronic disease caused by mycobacteria belonging to theMycobacterium tuberculosis complex (MTBC) in domestic and wild animals. MTBC strains infection has been confirmed in many animal species in Nigeria, including captive wildlife, cattle, dromedary camels, goats, and pigs. Despite widespread infection and the potential impact of the disease on public health, active surveillance and control strategies are absent in Nigeria. This study aimed to conduct the first comprehensive meta-analysis to assess the distribution of tuberculosis and analyze the potential moderators of infection in animals in Nigeria. Eligible studies (sixty-one (Cadmus et al., 2014) [61] prevalence and seven (Menzies and Neill, 2000) [7] case reports) were retrieved and included in the analysis. The analyses showed an overall pooled TB prevalence of 7.0% (95% CI: 6.0-8.0) comprising of infection distributed in cattle (8.0%, 95% CI: 7.0-8.0), goats (0.47%, 95% CI: 0-1.2), sheep (0.27%, 95% CI: 0.14-0.46), camels (13.0%, 95% CI: 0-47), and wildlife (13.0%, 95% CI: 9-16) respectively. The occurrence of infection was significantly moderated by the publication periods, geographical location, sample size, and detection methods. TB prevalence was heterogeneous across several predictors, with the year of publication exhibiting a higher rate (46%) of the detected heterogeneity. These findings should provide policy-relevant information to guide the design and establishment of prevention and control measures amenable to the local situations in Nigeria.
  2. Samaila A, Basir R, Abdul Aziz NAL, Alarabei AA, Gambo ML, Abdullah MA, et al.
    Iran J Parasitol, 2024;19(4):428-439.
    PMID: 39735843 DOI: 10.18502/ijpa.v19i4.17163
    BACKGROUND: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during P. berghei malaria in mice.

    METHODS: Plasmodium berghei ANKA infection in ICR mice was used as a malaria model. OGG1 concentration and oxidative stress levels in P. berghei-infected mice and their control counterparts were assessed during malaria using enzyme-linked immunosorbent assay. OGG1 activity in malaria mice was modulated using treatment with TH5487 and O8-OGG1 inhibitors. The effects of modulating OGG1 activity using OGG1 inhibitors on cytokine release and anemia during P. berghei malaria infection were assessed by cytometric bead array and measurement of total normal red blood cell count respectively.

    RESULTS: The plasma OGG1 level was significantly upregulated and positively correlated with parasitemia during P. berghei malaria in mice. Modulation of OGG1 ameliorated malaria severity by improving the total normal RBC count in TH5487 and O8-treated mice. Modulation of OGG1 with TH5487 caused significant reductions in serum levels of TNF-α, IFN-γ, IL-6, and IL-10. Similarly, OGG1 modulation activity using an O8-OGG1 inhibitor caused a significant reduction in serum levels of TNF-α, IL-2, IL-6, and IL-10.

    CONCLUSION: The findings indicate the involvement of OGG1 in the P. berghei malaria infection. OGG1 inhibition by TH5487 and O8-OGG1 inhibitors suppressed excessive cytokine release, and this may represent a novel therapeutic strategy for ameliorating the severity of malaria infection.

  3. Samaila A, Basir R, Gambo Lawal M, Abas R, Abdullah MA, Abd Majid R, et al.
    PMID: 39164801 DOI: 10.1080/08923973.2024.2391471
    OBJECTIVE: Inflammatory diseases are influenced by oxidative stress. Oxidatively damaged 8-oxoG in DNA is linked to inflammation. The enzyme OGG1 is responsible for repairing the damaged base in the DNA which is linked to pro-inflammatory signaling and severe inflammation. This study aims to explore the potential of targeting OGG1 as a therapeutic strategy in inflammatory disease conditions.

    METHODS: A comprehensive search and review of literature were conducted using appropriate scientific databases such as Google Scholar, Scopus, PubMed, Web of Science, and other references to obtain relevant information that suited the title and content of this article.

    RESULTS: Compelling pieces of evidence from many previous studies have shown the crucial role of the OGG1/8oxoG pathway in inflammatory disease conditions, leading to severe inflammatory response and death. Therefore, based on these pieces of evidence, targeting this enzyme (OGG1) using specific pharmacological inhibitors or interventions might lead to downregulation and amelioration of severe inflammation to reduce the morbimortality related to several disease conditions.

    CONCLUSION: This review highlighted the molecular mechanism of OGG1 activity via the 8-oxo/OGG1 pathway and its role in inflammation and inflammatory disease conditions. Due to the paucity of studies involving OGG1in inflammatory infectious diseases, further research projects are needed to explore the therapeutic potential of various OGG1 inhibitors to serve as novel therapeutic strategies in infectious inflammatory diseases of medical importance in developing countries such as malaria, meningitis, tuberculosis among others.

  4. Lawal MG, Samaila A, Basir R, Abd Aziz NAL, Alarabei AA, Abdullah MA, et al.
    Exp Parasitol, 2025 Mar 13;272:108930.
    PMID: 40088963 DOI: 10.1016/j.exppara.2025.108930
    Malaria is a life-threatening disease, leading to significant morbidity and mortality. Malaria treatment remains a challenge due to its intricate pathophysiology and high levels of parasite resistance to many currently available antimalarial agents. Thus, there is an urgent need for more therapeutic strategies to combat the disease. OGG1 activity has been implicated in many inflammatory disease conditions, making suppressing OGG1 activity a potential target for therapeutic purposes. The current study aimed to determine the effect of suppressing OGG1 activity on the severity, survival, and histopathological features of P. berghei-infected mice. In this study, the effects of modulating OGG1 activity on parasitaemia development, disease progression, survival rate, and histopathological outcomes in major organs of Plasmodium berghei (P. berghei) infected mice were evaluated. A significant difference in the mean parasitaemia was observed between the Vehicle, TH5487-treated, and O8-treated mice (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links