Displaying all 4 publications

  1. Samavati A, Othaman Z, Ghoshal SK, Dousti MR, Kadir MR
    Int J Mol Sci, 2012;13(10):12880-9.
    PMID: 23202927 DOI: 10.3390/ijms131012880
    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.
  2. Samavati A, Samavati Z, Velashjerdi M, Fauzi Ismail A, Othman MHD, Eisaabadi B G, et al.
    Chem Eng J, 2020 Nov 10.
    PMID: 33199974 DOI: 10.1016/j.cej.2020.127655
    Monitoring the COVID-19 virus through patients' saliva is a favorable non-invasive specimen for diagnosis and infection control. In this study, salivary samples of COVID-19 patients collected from 6 patients with the median age of 58.5 years, ranging from 34 to 72 years (2 females and 4 males) were analyzed using an Au/fiber Bragg grating (FBG) probe decorated with GO. The probe measures the prevalence of positivity in saliva and the association between the virus density and changes to sensing elements. When the probe is immersed in patients' saliva, deviation of the detected light wavelength and intensity from healthy saliva indicate the presence of the virus and confirms infection. For a patient in the hyperinflammatory phase of desease, who has virus density of 1.2 × 108 copies/mL in saliva, the maximum wavelength shift and intensity changes after 1600 s were shown to be 1.12 nm and 2.01 dB, respectively. While for a patient in the early infection phase with 1.6 × 103 copies/mL, these values were 0.98 nm and 1.32 dB. The precise and highly sensitive FBG probe proposed in this study was found a reliable tool for quick detection of the COVID-19 virus within 10 s after exposure to patients' saliva in any stage of the disease.
  3. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
  4. Yogarathinam LT, Goh PS, Ismail AF, Gangasalam A, Ahmad NA, Samavati A, et al.
    Chemosphere, 2022 Jan 11;293:133561.
    PMID: 35031248 DOI: 10.1016/j.chemosphere.2022.133561
    Membrane technology is a sustainable method to remove pollutants from petroleum wastewater. However, the presence of hydrophobic oil molecules and inorganic constituents can cause membrane fouling. Biomass derived biopolymers are promising renewable materials for membrane modification. In this study, fouling resistant biopolymer N-phthaloylchitosan (CS)- based polythersulfone (PES) mixed matrix membranes (MMMs) incorporated with nanocrystalline cellulose (NCC) was fabricated via phase inversion method and applied for produced water (PW) treatment. The morphological and Fourier-transform infrared spectroscopy (FTIR) analyses of the as-prepared NCC evidenced the formation of fibrous sheet-like structure and the presence of hydrophilic group. The membrane morphology and AFM analysis showed that the NCC altered the surface and cross-sectional morphology of the CS-PES MMMs. The tensile strength of NCC-CS-PES MMMs was also enhanced. 0.5 wt% NCC-CS-PES MMMs displayed a water permeability of 1.11 × 10-7 m/s.kPa with the lowest contact angle value of 61°. It affirmed that its hydrophilicity increased through the synergetic interaction between CS biopolymer and NCC. The effect of process variables such as transmembrane pressure (TMP) and synthetic produced water (PW) concentration were evaluated for both neat PES and NCC-CS-PES MMMs membranes. 0.5 wt% NCC-CS-PES MMMs exhibited the highest PW rejection of 98% when treating 50 mgL-1 of synthetic PW at a transmembrane pressure (TMP) of 200 kPa. The effect of nano silica and sodium chloride on the long-term PW filtration of NCC-CS-PES MMMs was also investigated.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links