Displaying all 4 publications

Abstract:
Sort:
  1. Samie N, Haerian B, Muniandy S, Green D, Ashouri M
    Appl Biochem Biotechnol, 2015 Apr;175(7):3397-417.
    PMID: 25820296 DOI: 10.1007/s12010-015-1513-6
    Our newly discovered metalloprotease, designated as ALP NS12 was selected using gelatin agar plates with incubation at 100 °C. Subcloning of the fragments in to pUC118 to make E. coli HB101 (pPEMP01NS) with following two-step chromatography using diethylaminoethyl sepharose (DEAE-sepharose) and Sephadex G-100 columns to purify 97-kDa expressed enzyme was performed. Although activity of immobilized ALP NS12 on glass surface was established at temperatures between 70 and 120 °C and pH ranges 4.0-13.0, the optimum temperature and pH were achieved at 100 °C and 11.0, respectively. Enhancement of enzyme activity was obtained in the presence of 5 mM MnCl2 (91 %), CaCl2 (357 %), FeCl2 (175 %), MgCl2 (94 %), ZnCl2 (412 %), NiCl (86 %), NaCl (239 %), and Na-sulfate (81 %) while inhibition was observed with EDTA (5 mM), PMSF (3 mM), urea (8 M), and SDS (1 %) at 65, 37, 33, and 42 %, respectively. Consequently, the enzyme was well analyzed using crystallography and protein modeling. ALP NS12 can be applied in industrial processes at extreme temperatures and under highly basic conditions, chelators, and detergents.
  2. Samie N, Muniandy S, Kanthimathi MS, Haerian BS
    PeerJ, 2016;4:e1588.
    PMID: 27019772 DOI: 10.7717/peerj.1588
    The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
  3. Samie N, Muniandy S, Kanthimathi MS, Haerian BS, Azudin RE
    Sci Rep, 2016 Apr 13;6:24172.
    PMID: 27072064 DOI: 10.1038/srep24172
    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
  4. Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, et al.
    Front Pharmacol, 2015;6:313.
    PMID: 26858642 DOI: 10.3389/fphar.2015.00313
    The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links