Displaying all 3 publications

Abstract:
Sort:
  1. Muthuchelvan D, Venkataramanan R, Hemadri D, Sanyal A, Tosh C
    Acta Virol., 2001 Jun;45(3):159-67.
    PMID: 11774894
    Partial nucleotide sequences of 1D gene of 38 isolates of foot-and-mouth disease virus (FMDV) of serotypes O, A and Asia 1 originating from various parts of India were determined. Field materials were subjected straight to RNA extraction, reverse transcription - PCR (RT-PCR) and sequencing. Also 3 FMDV vaccine strains, IND R2/75 (serotype O), IND 63/72 (serotype Asia 1) and IND 17/77 (serotype A) were included in the analysis. The seqences were compared mutually as well as with available corresponding sequences of other FMDV isolates, and their phylogenetic relationships were calculated. The deduced amino acid sequences showed that the serotype O isolates were relatively conserved as compared to serotype Asia 1 or A isolates from India. In phylogenetic analysis, the serotype O viruses clustered in two genotypes, one including the European vaccine strain (O1/K) and the other represented by the isolates from Bangladesh, India, Nepal and Turkey. The serotype Asia 1 viruses clustered in two groups of single genotype where the prototype strain from Pakistan (PAK 1/54) formed one group and the other was formed by the isolates from Bangladesh, Bhutan, India, Israel and Nepal. In serotype A viruses three well-differentiated genotypes were observed. The isolates from Azerbaijan, Bangladesh, Malaysia and India formed the first genotype. The second genotype was formed by isolates from Iran, Saudi Arabia and Turkey, while two recent Iranian isolates represented the third genotype. In India, the prevalence of at least one genotype could be identified in each serotype. This evolutionary clustering of isolates from the neighbor countries is not surprising, since these countries share border with India. The genetic relatedness between sequences of isolates from India and those from distant places is indicative of spread of the virus between the countries. Of importance is the fact that clinical materials proved useful for rapid generation of sequences and subsequent studying of molecular epidemiology of the disease.
  2. Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, et al.
    Antioxidants (Basel), 2023 Mar 23;12(4).
    PMID: 37107164 DOI: 10.3390/antiox12040787
    Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
  3. Tan DJH, Ng CH, Muthiah M, Yong JN, Chee D, Teng M, et al.
    Metabolism, 2024 Mar;152:155744.
    PMID: 38029839 DOI: 10.1016/j.metabol.2023.155744
    BACKGROUND: High body mass index (BMI) is a major risk factor for cancer development, but its impact on the global burden of cancer remains unclear.

    METHODS: We estimated global and regional temporal trends in the burden of cancer attributable to high BMI, and the contributions of various cancer types using the framework of the Global Burden of Disease Study.

    RESULTS: From 2010 to 2019, there was a 35 % increase in deaths and a 34 % increase in disability-adjusted life-years from cancers attributable to high BMI. The age-standardized death rates for cancer attributable to high BMI increased over the study period (annual percentage change [APC] +0.48 %, 95 % CI 0.22 to 0.74 %). The greatest number of deaths from cancer attributable to high BMI occurred in Europe, but the fastest-growing age-standardized death rates and disability-adjusted life-years occurred in Southeast Asia. Liver cancer was the fastest-growing cause of cancer mortality (APC: 1.37 %, 95 % CI 1.25 to 1.49 %) attributable to high BMI.

    CONCLUSION: The global burden of cancer-related deaths attributable to high BMI has increased substantially from 2010 to 2019. The greatest increase in age-standardized death rates occurred in Southeast Asia, and liver cancer is the fastest-growing cause of cancer mortality attributable to high BMI. Urgent and sustained measures are required at a global and regional level to reverse these trends and slow the growing burden of cancer attributed to high BMI.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links