Displaying all 4 publications

Abstract:
Sort:
  1. Sapian S, Budin SB, Taib IS, Mariappan V, Zainalabidin S, Chin KY
    PMID: 34802412 DOI: 10.2174/1871530321666211119144309
    Diabetic nephropathy (DN) is known as one of the driving sources of end-stage renal disease (ESRD). DN prevalence continues to increase in every corner of the world andthat has been a major concern to healthcare professionals as DN is the key driver of diabetes mellitus (DM) morbidity and mortality. Hyperglycaemia is closely connected with the production of reactive oxygen species (ROS) that cause oxidative stress response as well as numerous cellular and molecular modifications. Oxidative stress is a significant causative factor to renal damage, as it can activate other immunological pathways, such as inflammatory, fibrosis, and apoptosis pathways. These pathways can lead to cellular impairment and death as well as cellular senescence. Natural substances containing bioactive compounds, such as polyphenols, have been reported to exert valuable effects on various pathological conditions, including DM. The role of polyphenols in alleviating DN conditions has been documented in many studies. In this review, the potential of polyphenols in ameliorating the progression of DN via modulation of oxidative stress, inflammation, fibrosis, and apoptosis, as well as cellular senescence, has been addressed. This information may be used as the strategies for the management of DN and development as nutraceutical products to overcome DN development.
  2. Mohd Nor NA, Budin SB, Zainalabidin S, Jalil J, Sapian S, Jubaidi FF, et al.
    Int J Mol Sci, 2022 Jun 07;23(12).
    PMID: 35742837 DOI: 10.3390/ijms23126396
    Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.
  3. Sapian S, Taib IS, Katas H, Latip J, Zainalabidin S, Hamid ZA, et al.
    Pharmaceuticals (Basel), 2022 Oct 30;15(11).
    PMID: 36355516 DOI: 10.3390/ph15111344
    Cardiovascular disease (CVD) is directly linked to diabetes mellitus (DM), and its morbidity and mortality are rising at an alarming rate. Individuals with DM experience significantly worse clinical outcomes due to heart failure as a CVD consequence than non-diabetic patients. Hyperglycemia is the main culprit that triggers the activation of oxidative damage, inflammation, fibrosis, and apoptosis pathways that aggravate diabetic CVD progression. In recent years, the development of phytochemical-based nutraceutical products for diabetic treatment has risen due to their therapeutic properties. Anthocyanin, which can be found in various types of plants, has been proposed for preventing and treating various diseases, and has elicited excellent antioxidative, anti-inflammation, anti-fibrosis, and anti-apoptosis effects. In preclinical and clinical studies, plants rich in anthocyanin have been reported to attenuate diabetic CVD. Therefore, the development of anthocyanin as a nutraceutical in managing diabetic CVD is in demand. In this review, we unveil the role of anthocyanin in modulating diabetic CVD, and its potential to be developed as a nutraceutical for a therapeutic strategy in managing CVD associated with DM.
  4. Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, et al.
    Int J Mol Sci, 2021 Oct 27;22(21).
    PMID: 34769045 DOI: 10.3390/ijms222111616
    Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links