Displaying all 4 publications

Abstract:
Sort:
  1. Selambakkannu, Sarala, Bakar, Khomsaton Abu, Ming, Ting Teo, Jamaliah Sharif
    MyJurnal
    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation.
  2. Khomsaton Abu Bakar, Selambakkannu, Sarala, Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Ming, Ting Teo, Natasha lsnin, et al.
    MyJurnal
    The combination of irradiation and biological technique was chosen to study COD, BOD5 and colour removal from textiles effluent in the presence of food industry wastewater. Two biological treatments, the first consisting a mix of non irradiated textile and food industry wastewater and the second a mix of irradiated textiles wastewater and food industry wastewater were operated in parallel. Reduction percentage of COD in textiles wastewater increased from 29.4% after radiation to 62.4% after further undergoing biological treatment. After irradiation, the BOD5 of textiles wastewater was reduced by 22.1%, but reverted to the original value of 36mg/1 after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADM1 after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment.
  3. Othman NAF, Selambakkannu S, Abdullah TAT, Hoshina H, Sattayaporn S, Seko N
    Polymers (Basel), 2019 Dec 02;11(12).
    PMID: 31810361 DOI: 10.3390/polym11121994
    This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.
  4. Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, et al.
    Membranes (Basel), 2021 May 27;11(6).
    PMID: 34072048 DOI: 10.3390/membranes11060397
    This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links