Displaying 1 publication

Abstract:
Sort:
  1. Asan NB, Hassan E, Shah JVSRM, Noreland D, Blokhuis TJ, Wadbro E, et al.
    Sensors (Basel), 2018 Aug 21;18(9).
    PMID: 30134629 DOI: 10.3390/s18092752
    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7⁻2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links