Displaying all 3 publications

Abstract:
Sort:
  1. Kavitha, G., Sangeetha, V.N., Shani, S., Murali, M.R., Raja, E.A., Rukmanikanthan, S., et al.
    JUMMEC, 2011;14(2):1-6.
    MyJurnal
    INTRODUCTION: Despite the various methods described in producing platelet-rich plasma (PRP), it is well established that this biological product in its many preparations have been proven to enhance wound healing. However, very little have been known about the efficacy of these methods hence there is a lack of evidence in the superiority of one method over another. Thus, a study was conducted to compare these different protocols to determine which produces the highest concentration of platelets.
    METHODS: Peripheral blood was obtained from 24 healthy volunteers. Four different protocols using similar 2 step centrifugation methods of preparing PRP were applied to an equal number of samples in this study. Platelet counts were performed on whole blood (without processing), PRP preparations and platelet-poor plasma (PPP).
    RESULTS: All protocols produced higher amounts of platelet concentrates in PRP preparations than plasma. However, centrifugation at 150g for 10 minutes followed by another at 450g at 10 minutes produces significantly higher amount of platelets concentration (p<0.05)
    CONCLUSION: Optimizing the protocols to produce PRP appears to be important in obtaining a maximal yield of platelet concentrate. Here the protocol described has shown to provide significant concentration yield over all others.
    Keywords: platelet-rich-plasma, growth factors, centrifugal forces
  2. Shani S, Ahmad RE, Naveen SV, Murali MR, Puvanan K, Abbas AA, et al.
    ScientificWorldJournal, 2014;2014:845293.
    PMID: 25436230 DOI: 10.1155/2014/845293
    Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
  3. Subhan RA, Puvanan K, Murali MR, Raghavendran HR, Shani S, Abdullah BJ, et al.
    ScientificWorldJournal, 2014;2014:818502.
    PMID: 24983002 DOI: 10.1155/2014/818502
    This study was conducted to develop a technique for minimally invasive and accurate delivery of stem cells to augment nucleus pulposus (NP) in damaged intervertebral discs (IVD). IVD damage was created in noncontiguous discs at L4-L5 level; rabbits (N = 12) were randomly divided into three groups: group I treated with MSCs in HyStem hydrogel, group II treated with HyStem alone, and group III received no intervention. MSCs and hydrogel were administered to the damaged disc under guidance of fluoroscopy. Augmentation of NP was assessed through histological and MRI T2 mapping of the NP after eight weeks of transplantation. T2 weighted signal intensity was higher in group I than in groups II and III (P < 0.05). Disc height index showed maximum disc height in group I compared to groups II and III. Histological score of the degenerative index was significantly (P < 0.05) lower in group I (8.6 ± 1.8) than that in groups II (11.6 ± 2.3) and III (18.0 ± 5.7). Immunohistochemistry staining for collagen type II and aggrecan staining were higher in group I as compared to other groups. Our results demonstrate that the minimally invasive administration of MSCs in hyaluronan hydrogel (HyStem) augments the repair of NP in damaged IVD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links