Displaying all 5 publications

Abstract:
Sort:
  1. Shanti, R., Sam, I.C., Hany Ariffin
    JUMMEC, 2009;12(1):35-38.
    MyJurnal
    Following craniotomy for an atypical rhabdoid tumour of the posterior cranial fossa, a fourteen-month-old boy developed a ventriculitis with methicillin resistant Staphylococcus epidermidis (MRSE) which is associated with the use of a ventriculoperitoneal shunt. Treatment with intravenous vancomycin resulted in a severe allergic skin reaction. Substitution with intravenous teicoplanin resulted in negative blood culture and MRSE ventriculitis was successfully eradicated with concomitant use of intraventricular teicoplanin. No signs of recurrent infection or adverse events occurred. Intraventricular teicoplanin is safe and effective for the treatment of staphylococcal neurosurgical shunt infections.
  2. Ramesh, S., Shanti, R., Chin, S.F.
    ASM Science Journal, 2011;5(1):19-26.
    MyJurnal
    In this present study, a series of polymer electrolyte thin films were synthesized by incorporating different ratios of lithium triflate (LiCF3SO3) in a low molecular weight polyvinyl chloride (PVC) matrix by the solution casting technique. The incorporation of LiCF3SO3 suppressed the high degree of crystallinity in PVC enabling the system to possess an appreciable ionic conductivity. The ionic conductivity of the samples, with different LiCF3SO3 content, was determined by the aid of ac impedance spectroscopy. The highest ionic conductivity of 4.04  10–9 S cm–1 was identified for the composition of PVC: LiCF3SO3 (75:25). Further understanding of the ionic conductivity mechanism was based on temperature-dependent conductivity data which obeyed Arrhenius theory, indicating that the ionic conductivity enhancement was thermally assisted. The possible dipole-dipole interaction between the chemical constituents was confirmed with changes in cage peak, analysed using Fourier transform infrared spectroscopy.
  3. Ramesh S, Shanti R, Morris E
    Carbohydr Polym, 2013 Jan 2;91(1):14-21.
    PMID: 23044100 DOI: 10.1016/j.carbpol.2012.07.061
    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced.
  4. Ramesh S, Shanti R, Morris E
    Carbohydr Polym, 2012 Jan 04;87(1):701-706.
    PMID: 34663024 DOI: 10.1016/j.carbpol.2011.08.047
    A series of polymer electrolytes composed of corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LITFSI) and deep eutectic solvent (DES) were fabricated by solution casting technique. The DES was synthesized from a mixture of choline chloride and urea at a molar ratio of 1:2. The addition of DES is crucial in enhancing the room temperature ionic conductivity by increasing the amorphous elastomeric phase in CS:LITFSI matrix. The ionic transport mechanism is improved and appreciable amount of ion conducting polymer electrolytes is produced. The highest ionic conductivity achieved for the polymer electrolyte composition CS:LiTFSI:DES (14wt.%:6wt.%:80wt.%) is 1.04×10-3Scm-1. The anomalies that were observed with the addition of DES upon formation of neutral ion multiples were visually revealed by the SEM micrographs. The possible dipole-dipole interaction between the constituents was visualized by the FTIR spectroscopy upon change in cage peaks.
  5. Jacob M, Sahu S, Singh YP, Mehta Y, Yang KY, Kuo SW, et al.
    Indian J Crit Care Med, 2020 Nov;24(11):1028-1036.
    PMID: 33384507 DOI: 10.5005/jp-journals-10071-23653
    Introduction: Fluid therapy in critically ill patients, especially timing and fluid choice, is controversial. Previous randomized trials produced conflicting results. This observational study evaluated the effect of colloid use on 90-day mortality and acute kidney injury (RIFLE F) within the Rational Fluid Therapy in Asia (RaFTA) registry in intensive care units.

    Materials and methods: RaFTA is a prospective, observational study in Asian intensive care unit (ICU) patients focusing on fluid therapy and related outcomes. Logistic regression was performed to identify risk factors for increased 90-day mortality and acute kidney injury (AKI).

    Results: Twenty-four study centers joined the RaFTA registry and collected 3,187 patient data sets from November 2011 to September 2012. A follow-up was done 90 days after ICU admission. For 90-day mortality, significant risk factors in the overall population were sepsis at admission (OR 2.185 [1.799; 2.654], p < 0.001), cumulative fluid balance (OR 1.032 [1.018; 1.047], p < 0.001), and the use of vasopressors (OR 3.409 [2.694; 4.312], p < 0.001). The use of colloids was associated with a reduced risk of 90-day mortality (OR 0.655 [0.478; 0.900], p = 0.009). The initial colloid dose was not associated with an increased risk for AKI (OR 1.094 [0.754; 1.588], p = 0.635).

    Conclusion: RaFTA adds the important finding that colloid use was not associated with increased 90-day mortality or AKI after adjustment for baseline patient condition.

    Clinical significance: Early resuscitation with colloids showed potential mortality benefit in the present analysis. Elucidating these findings may be an approach for future research.

    How to cite this article: Jacob M, Sahu S, Singh YP, Mehta Y, Yang K-Y, Kuo S-W, et al. A Prospective Observational Study of Rational Fluid Therapy in Asian Intensive Care Units: Another Puzzle Piece in Fluid Therapy. Indian J Crit Care Med 2020;24(11):1028-1036.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links