This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding, called RSA-SSA. The proposed method introduces a better search space to find the optimal solution at each iteration. However, we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds. The obtained solutions by the proposed method are represented using the image histogram. The proposed RSA-SSA employed Otsu's variance class function to get the best threshold values at each level. The performance measure for the proposed method is valid by detecting fitness function, structural similarity index, peak signal-to-noise ratio, and Friedman ranking test. Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA. The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.