Artabotrys crassifolius Hook. f. & Thomson is a medicinal plant used in Malaysia. The cytotoxic effects of the hexane, chloroform and ethanol extracts of the leaves and bark were examined in vitro against MCF-7, MDA-468 and HCT-116 cells. The chloroform extract of the bark inhibited the growth of all cell lines with GI₅₀ values ranging from 4.2 µg/mL to 9.4 µg/mL. Silica gel column chromatography of this extract yielded artabotrine, liridine, atherospermidine and lysicamine. Artabotrine and lysicamine inhibited the growth of HCT-116 and MCF-7 cells with GI₅₀ values ranging from 3.3 µM to 3.9 µM. These alkaloids were not toxic to human embryonic kidney cells (HEK297) up to a concentration of 50 µg/mL.
If left untreated, hypercholesterolaemia can lead to atherosclerosis, given time. Plants from the Fabaceae family have shown the ability to significantly suppress atherosclerosis progression. We selected four extracts from Pithecellobium ellipticum, from the Fabaceae family, to be screened in a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) assay. The ethanol extract, at a concentration of 500 μ g/mL, exhibited superior inhibition properties over the other extracts by demonstrating 80.9% inhibition, while 0.223 μ g/mL of pravastatin (control) showed 78.1% inhibition towards enzymatic activity. These findings led to the fractionation of the ethanol extract using ethyl acetate : methanol (95 : 5), gradually increasing polarity and produced seven fractions (1A to 7A). Fraction 7A at 150 μ g/mL emerged as being the most promising bioactive fraction with 78.7% inhibition. FRAP, beta carotene, and DPPH assays supported the findings from the ethanol extract as it exhibited good overall antioxidant activity. The antioxidant properties have been said to reduce free radicals that are able to oxidize lipoproteins which are the cause of atherosclerosis. Phytochemical screenings revealed the presence of terpenoid, steroid, flavonoid, and phenolic compounds as the responsible group of compound(s), working individually or synergistically, within the extract to prevent binding of HMG-CoA to HMG-CoA reductase.