Displaying all 2 publications

Abstract:
Sort:
  1. Marlida Y, Shun TJ, Syofyan S, Ardani LR, Anggraini L
    Vet World, 2024 Nov;17(11):2694-2700.
    PMID: 39829651 DOI: 10.14202/vetworld.2024.2694-2700
    BACKGROUND AND AIM: Postbiotics are functional bioactive compounds or bioactive molecules with beneficial effects on health and functional activities in humans or livestock, produced by probiotic bacteria or yeast. Several postbiotics, including enzymes, short-chain fatty acids, amino acids, extracellular polysaccharides, microbial cell fragments, and teichoic acids, are currently being widely studied. This study aimed to explore the potential of secondary metabolites of Schleiferilactobacillus harbinensis LH 991 and Pichia kudriavzevii B-5P as lactic acid bacteria (LAB) and yeast isolated from Budu (fermented fish) which can act as postbiotics through in vitro rumen fermentation.

    MATERIALS AND METHODS: The method used a completely randomized design 5 × 4, with five treatments and four replications. The substrate diet consisted of 60% forage and 40% concentrate. The culture mixture was 1.3 × 1011 CFU/mL with a 50%:50% ratio of S. harbinensis LH 991 and P. kudriavzevii B-5P. The inoculum concentrations used in this study were 0% (control), 1%, 2%, 3%, and 4%. Treatments are arranged based on differences in inoculum concentration as follows: T0: control (0%); T1: 1%; T2: 2%; T3: 3%; and T4: 4%.

    RESULTS: The T4 group showed a significant increase (p < 0.01) in short-chain fatty acids (SCFA), including acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate acids, compared with the other treatments. Meanwhile, T4 shows that there is no significant (p > 0.01) effect on in vitro digestibility (in vitro dry matter digestibility, in vitro organic matter digestibility, and in vitro crude fiber digestibility). However, a highly significant (p < 0.01) effect was on volatile fatty acid total, NH3, and microbial crude protein synthesis.

    CONCLUSION: It is concluded that the treatment with a 4% inoculum concentration (T4) containing a mixture of S. harbinensis LH 991 and P. kudriavzevii B-5P as LAB and yeast isolated from Budu (fermented fish) in 50%:50% ratio increased SCFA and rumen fermentation significantly, whereas it did not affect in vitro digestibility.

  2. Sreedharan DK, Alias H, Makhtar MMZ, Shun TJ, Mokhtar AMA, Shukor H, et al.
    Open Life Sci, 2024;19(1):20220809.
    PMID: 38283116 DOI: 10.1515/biol-2022-0809
    Bacteriocins produced by Bacillus subtilis have gained recognition for their safe use in humans. In this study, we aimed to assess the inhibitory activity of an antimicrobial peptide synthesized by the wild-type strain of B. subtilis against the notorious pathogen Pseudomonas aeruginosa. Our investigation employed the broth microdilution method to evaluate the inhibitory potential of this peptide. Among the four different pathogen strains tested, P. aeruginosa exhibited the highest susceptibility, with an inhibition rate of 29.62%. In parallel, we explored the cultivation conditions of B. subtilis, recognizing the potential of this versatile bacterium for applications beyond antimicrobial production. The highest inhibitory activity was achieved at pH 8, with an inhibition rate of 20.18%, indicating the potential for optimizing pH conditions for enhanced antimicrobial peptide production. For the kinetics of peptide production, the study explored different incubation periods and agitation levels. Remarkably, the highest activity of B. subtilis was observed at 24 h of incubation, with an inhibition rate of 44.93%. Finally, the study focused on the isolation of the antimicrobial peptide from the cell-free supernatant of B. subtilis using ammonium sulfate precipitation at various concentrations. The highest recorded activity was an impressive 89.72% achieved at an 80% concentration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links