Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness.
Formaldehyde is added illegally to food to extend its shelf life due to its antiseptic and preservation properties. Several research has been conducted to examine the consequences of adulteration with formaldehyde in food items. These findings suggest that adding formaldehyde to food is considered harmful as it accumulates in the body with long-term consumption. In this review includes study findings on food adulteration with formaldehyde and their assessment of food safety based on the analytical method applied to various geographical regions, food matrix types, and their sources in food items. Additionally, this review sought to assess the risk of formaldehyde-tainted food and the understanding of its development in food and its impacts on food safety in light of the widespread formaldehyde adulteration. Finally, the study would be useful as a manual for implementing adequate and successful risk assessment to increase food safety.
Insect consumption is a traditional practice in many countries. Currently, the urgent need for ensuring food sustainability and the high pressure from degrading environment are urging food scientists to rethink the possibility of introducing edible insects as a promising food type. However, due to the lack of the standardized legislative rules and the adequate scientific data that demonstrate the safety of edible insects, many countries still consider it a grey area to introduce edible insects into food supply chains. In this review, we comprehensively reviewed the legal situation, consumer willingness, acceptance, and the knowledge on edible insect harvesting, processing as well as their safety concerns. We found that, despite the great advantage of introducing edible insects in food supply chains, the legal situation and consumer acceptance for edible insects are still unsatisfactory and vary considerably in different countries, which mostly depend on geographical locations and cultural backgrounds involving psychological, social, religious, and anthropological factors. Besides, the safety concern of edible insect consumption is still a major issue hurdling the promotion of edible insects, which is particularly concerning for countries with no practice in consuming insects. Fortunately, the situation is improving. So far, some commercial insect products like energy bars, burgers, and snack foods have emerged in the market. Furthermore, the European Union has also recently issued a specific item for regulating new foods, which is believed to establish an authorized procedure to promote insect-based foods and should be an important step for marketizing edible insects in the near future.