Displaying all 5 publications

Abstract:
Sort:
  1. Alpandi AH, Husin H, Sidek A
    PMID: 34617226 DOI: 10.1007/s11356-021-16791-1
    Transportation of crude oil and refined petroleum is the main function of pipeline system in petroleum industry. Unfortunately, wax precipitation has become a serious problem for the petroleum industry where it causes pipeline blockage and eventually results in operational catastrophe. Up-to-date, the technique used to mitigate wax deposition by injecting chemical wax inhibiting agent remains a debate amongst researchers. This review addresses the evolution of chemical wax inhibitor generations started from polymer-based in the early 1980s, followed by biosurfactant-based in the late 1990s and finally plant-based or agricultural-based in recent years. Pivoting to environmental impact, petroleum industry is amidst finding a green wax inhibiting agent to solve wax deposition problem that occurs during the transportation of crude oil whilst facilitating the remediation process of contaminated groundwater.
  2. Ikram R, Mohamed Jan B, Sidek A, Kenanakis G
    Materials (Basel), 2021 Jul 27;14(15).
    PMID: 34361364 DOI: 10.3390/ma14154171
    An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.
  3. Ikram R, Mohamed Jan B, Abdul Qadir M, Sidek A, Stylianakis MM, Kenanakis G
    Polymers (Basel), 2021 Sep 25;13(19).
    PMID: 34641082 DOI: 10.3390/polym13193266
    Herein, we report recent developments in order to explore chitin and chitosan derivatives for energy-related applications. This review summarizes an introduction to common polysaccharides such as cellulose, chitin or chitosan, and their connection with carbon nanomaterials (CNMs), such as bio-nanocomposites. Furthermore, we present their structural analysis followed by the fabrication of graphene-based nanocomposites. In addition, we demonstrate the role of these chitin- and chitosan-derived nanocomposites for energetic applications, including biosensors, batteries, fuel cells, supercapacitors and solar cell systems. Finally, current limitations and future application perspectives are entailed as well. This study establishes the impact of chitin- and chitosan-generated nanomaterials for potential, unexplored industrial applications.
  4. Ikram R, Jan BM, Ahmad W, Sidek A, Khan M, Kenanakis G
    Materials (Basel), 2022 Nov 21;15(22).
    PMID: 36431754 DOI: 10.3390/ma15228266
    Throughout the world, the construction industry produces significant amounts of by-products and hazardous waste materials. The steel-making industry generates welding waste and dusts that are toxic to the environment and pose many economic challenges. Water-based drilling fluids (WBDF) are able to remove the drill cuttings in a wellbore and maintain the stability of the wellbore to prevent formation damage. To the best of our knowledge, this is the first study that reports the application of welding waste and its derived graphene oxide (GO) as a fluid-loss additive in drilling fluids. In this research, GO was successfully synthesized from welding waste through chemical exfoliation. The examination was confirmed using XRD, FTIR, FESEM and EDX analyses. The synthesized welding waste-derived GO in WBDF is competent in improving rheological properties by increasing plastic viscosity (PV), yield point (YP) and gel strength (GS), while reducing filtrate loss (FL) and mud cake thickness (MCT). This study shows the effect of additives such as welding waste, welding waste-derived GO and commercial GO, and their amount, on the rheological properties of WBDF. Concentrations of these additives were used at 0.01 ppb, 0.1 ppb and 0.5 ppb. Based on the experiment results, raw welding waste and welding waste-derived GO showed better performance compared with commercial GO. Among filtration properties, FL and MCT were reduced by 33.3% and 39.7% with the addition of 0.5 ppb of raw welding-waste additive, while for 0.5 ppb of welding waste-derived GO additive, FL and MCT were reduced by 26.7% and 20.9%, respectively. By recycling industrial welding waste, this research conveys state-of-the-art and low-cost drilling fluids that aid in waste management, and reduce the adverse environmental and commercial ramifications of toxic wastes.
  5. Balqis N, Mohamed Jan B, Simon Cornelis Metselaar H, Sidek A, Kenanakis G, Ikram R
    Materials (Basel), 2023 May 14;16(10).
    PMID: 37241354 DOI: 10.3390/ma16103726
    It is no secret that graphene, a two-dimensional single-layered carbon atom crystal lattice, has drawn tremendous attention due to its distinct electronic, surface, mechanical, and optoelectronic properties. Graphene also has opened up new possibilities for future systems and devices due to its distinct structure and characteristics which has increased its demand in a variety of applications. However, scaling up graphene production is still a difficult, daunting, and challenging task. Although there is a vast body of literature reported on the synthesis of graphene through conventional and eco-friendly methods, viable processes for mass graphene production are still lacking. This review focuses on the variety of unwanted waste materials, such as biowastes, coal, and industrial wastes, for producing graphene and its potential derivatives. Among the synthetic routes, the main emphasis relies on microwave-assisted production of graphene derivatives. In addition, a detailed analysis of the characterization of graphene-based materials is presented. This paper also highlights the current advances and applications through the recycling of waste-derived graphene materials using microwave-assisted technology. In the end, it would alleviate the current challenges and forecast the specific direction of waste-derived graphene future prospects and developments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links