METHODS: We performed a systematic search of four databases for relevant studies. Meta-analysis was done based on United Nations geoscheme regions, individual countries and study period. We used a random-effects model to calculate pooled prevalence and mortality estimates with 95% confidence intervals (CIs), weighted by study size.
RESULTS: Among 6445 reports screened, we identified 126 relevant studies, comprising data from 29 countries. The overall prevalence of multidrug-resistance among A. baumannii causing HAP and VAP pooled from 114 studies was 79.9% (95% CI 73.9-85.4%). Central America (100%) and Latin America and the Caribbean (100%) had the highest prevalence, whereas Eastern Asia had the lowest (64.6%; 95% CI, 50.2-77.6%). The overall mortality estimate pooled from 27 studies was 42.6% (95% CI, 37.2-48.1%).
CONCLUSIONS: We observed large amounts of variation in the prevalence of multidrug-resistance among A. baumannii causing HAP and VAP and its mortality rate among regions and lack of data from many countries. Data from this review can be used in the development of customized strategies for infection control and antimicrobial stewardship.
DESIGN SETTING AND PARTICIPANTS: This international, multicentre, observational pharmacokinetic study will comprise adult critically ill patients prescribed antifungal agents including fluconazole, voriconazole, posaconazole, isavuconazole, caspofungin, micafungin, anidulafungin, and amphotericin B for the treatment or prophylaxis of invasive fungal disease. A minimum of 12 patients are targeted for enrolment for each antifungal agent, across 12 countries and 30 intensive care units to perform descriptive pharmacokinetics. Pharmacokinetic sampling will occur during two dosing intervals (occasions): firstly, between days 1 and 3, and secondly, between days 4 and 7 of the antifungal course, collecting three samples per occasion. Patients' demographic and clinical data will be collected.
MAIN OUTCOME MEASURES: The primary endpoint of the study is attainment of pharmacokinetic/pharmacodynamic target exposures that are associated with optimal efficacy. Thirty-day mortality will also be measured.
RESULTS AND CONCLUSIONS: This study will describe whether contemporary antifungal drug dosing achieves drug exposures associated with optimal outcomes. Data will also be used for the development of antifungal dosing algorithms for critically ill patients. Optimised drug dosing should be considered a priority for improving clinical outcomes for critically ill patients with fungal infections.