Displaying all 3 publications

Abstract:
Sort:
  1. Haider N, Yavlinsky A, Simons D, Osman AY, Ntoumi F, Zumla A, et al.
    Epidemiol Infect, 2020 02 26;148:e41.
    PMID: 32100667 DOI: 10.1017/S0950268820000424
    Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1-31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries.
  2. Elmi SA, Simons D, Elton L, Haider N, Abdel Hamid MM, Shuaib YA, et al.
    Antibiotics (Basel), 2021 Jan 26;10(2).
    PMID: 33530462 DOI: 10.3390/antibiotics10020117
    Antimicrobial resistance is of concern to global health security worldwide. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Escherichia coli (E. coli) resistance from poultry farms in Kelantan, Terengganu, and Pahang states of east coast peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) were collected. Characteristics of the sampled farms including management type, biosecurity, and history of disease were obtained using semi-structured questionnaire. Presumptive E. coli isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials and interpreted alongside risk factor data obtained from the surveys. We isolated 717 E. coli samples from poultry and environmental samples. Our findings revealed that cloacal (17.8%, 46/259), faecal (22.6%, 19/84), sewage (14.3%, 2/14) and tap water (7.1%, 1/14) were significantly (p < 0.003) resistant to at least three classes of antimicrobials. Resistance to tetracycline class were predominantly observed in faecal samples (69%, 58/84), followed by cloacal (64.1%, 166/259), sewage (35.7%, 5/14), and tap water (7.1%, 1/84), respectively. Sewage water (OR = 7.22, 95% CI = 0.95-151.21) had significant association with antimicrobial resistance (AMR) acquisition. Multivariate regression analysis identified that the risk factors including sewage samples (OR = 7.43, 95% CI = 0.96-156.87) and farm size are leading drivers of E. coli antimicrobial resistance in the participating states of east coast peninsular Malaysia. We observed that the resistance patterns of E. coli isolates against 12 panel antimicrobials are generally similar in all selected states of east coast peninsular Malaysia. The highest prevalence of resistance was recorded in tetracycline (91.2%), oxytetracycline (89.1%), sulfamethoxazole/trimethoprim (73.1%), doxycycline (63%), and sulfamethoxazole (63%). A close association between different risk factors and the high prevalence of antimicrobial-resistant E. coli strains reflects increased exposure to resistant bacteria and suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the future threat of emergence of multidrug-resistant pathogen isolates. Public health interventions to limit antimicrobial resistance need to be tailored to local poultry farm practices that affect bacterial transmission.
  3. Osman AY, Elmi SA, Simons D, Elton L, Haider N, Khan MA, et al.
    Pathogens, 2021 Sep 09;10(9).
    PMID: 34578192 DOI: 10.3390/pathogens10091160
    The burden of antimicrobial use in agricultural settings is one of the greatest challenges facing global health and food security in the modern era. Malaysian poultry operations are a relevant but understudied component of epidemiology of antimicrobial resistance. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Salmonella isolates from poultry farms in three states of East Coast Peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) was collected from poultry operations. Characteristics of the sampled farms and associated risk factors were obtained using semi-structured questionnaires. Presumptive Salmonella spp. isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials using disk diffusion method. Our findings revealed that the proportion of Salmonella spp.-positive isolates across sample source were as following: cloacal swab (46.3%, 120/259); faecal (59.5%, 50/84); in tap water (14.3%, 2/14); and in sewage sample (35.7%, 5/14). Isolates from faecal (15.5%, 13/84), cloacal (1.2%, 3/259), and sewage (7.1%, 1/14) samples were significantly resistant to at least five classes of antimicrobials. Resistance to Sulfonamides class (52%, 92/177) was predominantly observed followed by tetracycline (39.5%, 70/177) and aminoglycosides (35.6%, 63/177). Multivariate regression analysis identified intensive management system (OR = 1.55, 95% CI = 1.00-2.40) as a leading driver of antimicrobial resistance (AMR) acquisition. A prevalence of resistance to common antimicrobials was recorded for sulfamethoxazole (33.9%), tetracycline (39.5%), and trimethoprim-sulphamethoxazole (37.9%). A close association between different risk factors and the prevalence of AMR of Salmonella strains suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the emergence and evolution of multidrug-resistant pathogen isolates. One Health approach is recommended to achieve a positive health outcome for all species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links