A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meandered slot, and U-shaped slot are implemented in the proposed design to block the co-existing bands. The E-shaped resonator stops frequencies ranging from 1.8⁻2.3 GHz (Advanced Wireless System (AWS1⁻AWS2) band), while the meandered slot blocks frequencies from 3.2⁻3.8 GHz (WiMAX band). The co-existing band ranging from 5.6⁻6.1 GHz (IEEE 802.11/HIPERLANband) is blocked by utilizing the U-shaped section in the feeding network. The notched bands can be independently controlled over a wide range of frequencies using specific parameters. The proposed antenna is suitable for many applications because of its flat gain, good radiation characteristics at both principal planes, uniform group delay, and non-varying transfer function ( S 21 ) for the entire UWB frequency range.
A compact, cylindrical dielectric resonator antenna (CDRA), using radio frequency signals to identify different liquids is proposed in this paper. The proposed CDRA sensor is excited by a rectangular slot through a 3-mm-wide microstrip line. The rectangular slot has been used to excite the CDRA for H E M 11 mode at 5.25 GHz. Circuit model values (capacitance, inductance, resistance and transformer ratios) of the proposed CDRA are derived to show the true behaviour of the system. The proposed CDRA acts as a sensor due to the fact that different liquids have different dielectric permittivities and, hence, will be having different resonance frequencies. Two different types of CDRA sensors are designed and experimentally validated with four different liquids (Isopropyl, ethanol, methanol and water).
This paper described a four-band implantable RF rectifier with simplified circuit complexity. Each RF-rectifier cell is sequentially matched to the four operational frequencies to accomplish the proposed design. The proposed RF rectifier can harvest RF signals at 1.830, 2.100, and white space Wi-Fi bands between 2.38 to 2.68 GHz, respectively. At 2.100 GHz, the proposed RF harvester achieved a maximum (radio frequency direct current) RF-to-DC power conversion efficiency (PCE) of 73.00% and an output DC voltage [Formula: see text] of 1.61 V for an RF power of 2 dBm. The outdoor performance of the rectenna shows a [Formula: see text] of 0.440 V and drives a low-power bq25504-674 evaluation module (EVM) at 1.362 V. The dimension of the RF-rectifier on the FR-4 PCB board is 0.27[Formula: see text] [Formula: see text] 0.29[Formula: see text]. The RF-rectifier demonstrates the capacity to effectively utilize the frequency domain by employing multi-band operation and exhibiting a good impedance bandwidth through a sequential matching technique. Thus, by effectively controlling the rectenna's ambient performance, the proposed design holds the potential for powering a range of low-power biomedical implantable devices. (BIDs).