The aim of the present study is to investigate the potential of magnetic field application as an alternative approach for controlling sludge bulking due to long sludge retention time (SRT) while enhancing nitrification efficiency upon the occurrence. Two sequencing batch reactors, reactor A (SBRA, magnetic field intensity 88.0 mT) and reactor B (SBRB, control) were operated under long SRT to induce the growth of filamentous microorganisms. The effect of magnetic field on nitrification, viz. ammonia-nitrogen (NH4-N) and nitrite removal, as well as biomass properties were studied under the sludge bulking condition. Results indicated that nitrification efficiency of SBRA was consistently higher with 90% NH4-N removal and 74-81% nitrite removal, which could be credited to the enhanced biomass properties of activated sludge due to the induced magnetic field. Metabolism activity and biodegradability of aerobic bacteria were also enhanced through the application of magnetic field, even under long SRT condition. This was evidenced by the average oxygen uptake rate (OUR) in SBRA that was higher with 11.7 ± 1.2 mg/L·h compared to SBRB with 9.5 ± 0.4 mg/L·h. Occurrence of filamentous sludge bulking was likewise minimized.
The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0-30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites.