In this work, zinc chromite (ZnCr2O4) nanostructures have been synthesized through co-precipitation method. The effect of various parameters such as alkaline agent, pH value, and capping agent type was investigated on purity, particle size and morphology of samples. It was found that particle size and morphology of the products could be greatly influenced via these parameters. The synthesized products were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectra, X-ray energy dispersive spectroscopy (EDS), photoluminescence (PL) spectroscopy, diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometry (VSM). The superhydrophilicity of the calcined oxides was investigated by wetting experiments and a sessile drop technique which carried out at room temperature in air to determine the surface and interfacial interactions. Furthermore, the photocatalytic activity of ZnCr2O4 nanoparticles was confirmed by degradation of anionic dyes such as Eosin-Y and phenol red under UV light irradiation. The obtained ZnCr2O4 nanoparticles exhibit a paramagnetic behavior although bulk ZnCr2O4 is antiferromagnetic, this change in magnetic property can be ascribed to finite size effects.
In this work, SrCrxFe12-xO19 (x = 0.0, 0.5, 1.0, 1.5) nanostructures were successfully synthesized by sol-gel auto-combustion method, and different aminoacids were used as green reductants. Various analysis results show that SrCrxFe12-xO19 nanoparticles synthesized successfully.The present study shows that SrCrxFe12-xO19 nanoparticle could be used as adsorbent for the desulfurization of liquid fuels. Increasing of nanoparticles concentration was caused to increase the adsorption rate of sulfur contents of fuel. The adsorption rate of sulfur contents of fuel in various concentrations 4.5, 9.5, and 18.5 g. L -1 of SrCrxFe12-xO19 nanoparticles in solution was estimated about 39, 50, and 62% for 30 min, respectively. The results of catalytic tests reveals that SrCrxFe12-xO19 nanoparticles have the potential to be used as a new kind of semiconductor catalysts for the desulfurization of liquid fuels. Magnetic property of the final sample was measured at room temperature by a vibration sample magnetometer (VSM) and shown that the intrinsic coercivity of product is about 6000 Oe and it exhibits characteristics of single magnetic domains (Mr/ Ms = 0.53).